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Abstract

Recently, botnets emerged as one of the biggest threads to businesses in terms of cyber-security.
Basically botnets are a network of hosts that have been infected by malware which enables the
controller of botnet utilize these hosts as a distributed platform for commencing various criminal
operations, such as launching various forms of attacks on networks, including Distributed Denial
of Service (DDoS) attacks, and password fishing. Remote control of the infected hosts that are
part of a botnet is maintained by so-called ’command and control’ (C&C) channels. These days,
communication over these C&C channels is maintained over numerous domain names that are
associated with hosts on the botnet. Each of these botnet-domains can in turn be associated with
numerous IP-addresses which can be rapidly changed, in order to complicate the tracing and
disabling of a botnet. The mechanism of rapidly changing the IP-addresses that are associated with
a particular domains name, is known as ’Fast-Flux’ and is not only used in the context of botnets,
but also by large content distribution networks (CDNs) like ’google.com, for example.
The subject of this work is to investigate a relatively new attempt in detecting Fast-Flux domains
that are involved in unlawful activities, which utilizes methods of geoinformation and spatial
statistics, as well as to discuss the results that can be achieved by employing them, in order to give
a statement about their validity.
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Zusammenfassung

Botnets haben sich inzwischen als eine der größten Bedrohungen für Gewerbe aller Art hervorgetan
was Cyber-Security anbelangt. Im Grunde genommen ist ein Botnet ein Netzwerk von mit Malware
infizierten Rechnern, die von demjenigen der das Botnet kontrolliert dazu benutzt werden können
verschiedenste kriminelle Operationen durchzuführen. Dies beinhaltet verschiedene Formen des
Angriffs auf Netzwerke, wie zum Beispiel Distributed Denial of Service (DDos) Attacken oder
Phishing (Password Fishing). Die infizierten Rechner werden über sogenannte ‚Command and
Control‘ (C&C) Kanäle ferngesteuert. Heutzutage findet die Kommunikation über diese C&C
Kanäle über eine Vielzahl von Domain-Namen statt, die mit Rechnern in einem Botnet assoziiert
sind. Jede dieser Botnet-Domains kann wiederum mit einer Vielzahl von IP-Adressen assoziiert
werden welche sich in schneller Abfolge ändern können, um das Verfolgen und lahmlegen von
Botnets zu erschweren. Die Vorgehensweise, IP-Adressen die mit einer Domain assoziiert sind in
rascher Abfolge zu ändern, wird ‚Fast-Flux‘ genannt und wird nicht nur von Botnets, sondern
auch von großen Content Distribution Networks (CDNs), wie zum Beispiel ‚google.com‘ genutzt.
Der Kern dieser Arbeit dreht sich darum einen relativ neuen Ansatz zum Aufspüren von in illegale
Aktivitäten verwickelten Fast-Flux Domains, der Gebrauch von Mitteln der Geoinformation und
Räumlichen Statistik macht, zu untersuchen und die damit erzielbaren Ergebnisse zu erörtern und
dann ein Urteil über ihre Aussagekraft zu fällen.
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1 Introduction

In recent times, special forms of malware, so-called bot-nets, have emerged as one of the
most serious Internet threads to all kind of businesses, companies as well as end-users and
their networks respectively.

According to Feily et al. (2009) and Nair and Ewards (2012) a bot-net is a network formed
by malicious pieces of software that are called "bots". These "bots" infect computers and
hide themselves on the system while operating unnoticed by the user. As stated in Zhang
et al. (2011), these bot-nets are then subsequently used to launch network attacks, DDoS1

attacks as well as information phishing2 attacks.

In February 2013 an Europe-wide cyber security project with the acronym ACDC3, which
stands for Advanced Cyber Defence Infrastructure, has been started. This project, made up
of the contributions of 28 partner institutions and companies from 14 different countries,
aims to fight botnets by addressing issues of identification, analysis, prevention, mitigation,
recovery and evaluation of those. The work done during the project shall result in a
number of anti-botnet services of different kinds, which are to be operated by the member
states. One of these services comprises of the so-called ’centralised data clearing house’,
which will act as a central information hub for anti-botnet actions, where data from a
wide range of different sources will aggregated in a common data format, stored and
analysed. The research done during this thesis happens in the context of the ACDC project,
as a theoretical contribution to the complex matter of how botnets could be detected
and mitigated and will incorporate methods of geoinformation and spatial statistics
respectively.

1 Distributed Denial of Service
http://oxforddictionaries.com/definition/english/DDoS [last access: 14th of June 2013]

2 http://oxforddictionaries.com/definition/english/phishing [last access: 14th of June 2013]
3 http://ec.europa.eu/information_society/apps/projects/factsheet/index.cfm?project_ref=

325188 [last access: 14th of June 2013]

1
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http://oxforddictionaries.com/definition/english/phishing
http://ec.europa.eu/information_society/apps/projects/factsheet/index.cfm?project_ref=325188
http://ec.europa.eu/information_society/apps/projects/factsheet/index.cfm?project_ref=325188


1 Introduction

1.1 Motivation and Problem Definition

Information as well as commands that control the network are passed to and from the
infected computers to the controller of the bot-net (the so-called bot-master) by means of a
command and control (C&C) channel by which the bot-master can update and direct the
botnet. The architecture of these channels may span over a range of network topologies
and utilize different protocols for communication. (Zhang et al. 2011)
As Nair and Ewards (2012) stated these channels originally relied on IRC4 or HTTP5

technologies which could be disabled with relative ease. Nowadays, amongst others,
peer to peer (P2P) technology is used to establish communication between bots, with
C&C functionality distributed between many command and control servers that are
interconnected. P2P technology has the advantage over IRC or HTTP based channels that
it reasonably complicates to shut down or monitor them. (Feily et al. 2009)
As attempts were made correspondingly in order to disable or shut down particular nodes
on the bot-net respectively, bot-nets began to utilize a network mechanism that is called
Fast-Flux. At a glance, Fast-Flux enables bot-nets to associate numerous IP-addresses with
domain names that are used for communication among them. Those associations can be
switched in a rapid manner, a process that was originally used by legitimate websites for
the sake of maintaining availability and load-balancing (see subsection 2.1.2). (Stalmans
et al. 2012)

The malicious nature of bot-nets demands a reliable mechanism for detecting and disabling
them. A major step in this context is to reliably detect domains that are using Fast-Flux
for the sake of obscuring botnet communication, in order to disable them. Unfortunately,
genuine detection methods are commonly complex and demand a lot of resources, such as
comprehensive traffic monitoring. (Nair and Ewards 2012)
Another problem in correctly identifying Fast-Flux domains however, is that legit domains
could also expose Fast-Flux behaviour as they employ it for load-balancing reasons. A
proposed detection mechanism therefore should be also capable of distinguishing between
legitimate and malicious domains employing Fast-Flux mechanisms. (Stalmans et al.
2012)

4 Internet Relay Chat
http://oxforddictionaries.com/definition/english/IRC [last access: 14th of June 2013]

5 Hypertext Transfer Protocol
http://oxforddictionaries.com/definition/english/HTTP [last access: 14th of June 2013]
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1 Introduction

For the sake of clarification, the terminology that will be used further throughout this work
(which has been determined on the basis of the terms used by Stalmans et al. (2012), Feily
et al. (2009) and Wang et al. (2012)) is organized as follows:

• Domain names that have a Fast-Flux mechanism standing behind them will be
henceforth designated as Fast-Flux domains (FFDs).

• Domains that are recognized to be not involved in Fast-Flux activities regardless of if
they are malicious or not are simply called Non-Fast-Flux domains.

• Domains that are recognized and trusted, which for example include google.com or
twitter.com, will be designated as legit.

• Domains that are recognized to be involved in bot-net activities or to distribute
malware respectively, will be designated as malicious.

• Domains that are not explicitly known to belong to any of the previous kinds, will be
referred to as unclassified or mutually malicious.

• Domains that are indicated by a statistical test to be using Fast-Flux will be termed
suspected and otherwise non-suspected.

Additionally it is important to clarify that whether a domain uses Fast-Flux or not, can not
be inferred from whether a domain is legit or malicious alone.

This work deals with a relatively new attempt in identifying Fast-Flux domains as well as distin-
guishing legit Fast-Flux domains from malicious ones, by employing methods of spatial-statistics
and statistic analyses. The basis for this approach is supplied by the research done by
Stalmans et al. (2012) and Wang et al. (2012).

Stalmans et al. (2012) has shown that this approach which is using spatial analysis
methods has the advantage that the statistical classifiers are lightweight and not as
resource demanding as traditional ones in terms of generated network traffic. Also
the delay between a domain registered and the said domain to be classified is close to
zero.

The main objective of this work is to combine classification methods from the aforemen-
tioned authors and investigate the results that can be achieved by combining them, as well
as to issue a statement about the validity of those methods.

The next chapter will give an overview of how this is going to be achieved.

3



1 Introduction

1.2 Method of Solution

The detection approach of of Fast-Flux domains (FFDs) utilizing spatial statistics centres
around the idea that IP addresses of FFDs can be mapped at an approximate (but coarse)
physical location on the planet. These locations, when analysed by methods of spatial
statistics, exhibit a particular spatial distribution and behaviour respectively that is signifi-
cantly different from those of domains that do not employ Fast-Flux services as well as that
this behaviour varies over time differently for legitimate and malicious domains.(Stalmans
et al. 2012)

The procedures necessary for the statistical analyses will be implemented in the R scripting-
language, which is a free and widely-used environment for statistical computing, as well as
for developing statistical software. (R Foundation 2013) The reasons for utilizing R during
the course of this work include: (Antonio Gasparrini 2011)

• (as mentioned) R is free software

• it features reasonable performance

• R features a large community and is well documented

The data necessary for the statistical tests to be conducted basically consists of sets of do-
main names which behaviour is to be investigated; this datasets will consist of both, names
of trusted and widely known domains, as well as domains that are suspected/reported to
be part of a botnet or distribute malicious software. All of this data will be obtained from
publicly available sources. Domain name information will include both, widely trusted
(seomoz.org 2013) as well as suspicious malware domain names (malwaredomains.com
2013) and domain names that are suspected to be associated with a real botnet (abuse.ch
2013).

Domain related IP-information will be entirely obtained by using the network administra-
tion command-line tool ’dig’ which counts to the standard software repertoire of some
linux-distributions, and is used to retrieve information from domain name system (DNS)
servers. (linux.die.net 2013)

Spatial information of IP-addresses, namely IP geolocations will be obtained by using
the database supplied by the free and open-source ’freegeoip.net’ Web service, whose
source code can be used to set up a local instance of the database. (Alexandre Fiori
2013)

4



1 Introduction

The discussion of the results will incorporate a detailed examination of the statistical
outcomes that have been achieved, by considering different statistical values in their
respective context.

1.3 Expected Results

The following outcomes are expected from this work:

• a statistic workflow that processes a list of domain names and classifies these domains
as either suspected or non-suspected, as well as a server-runnable R-script that
implements the said workflow (see chapter 3)

• a subsequent examination of the results and a discussion about the validity of the
classification methods (see chapter 4)

1.4 Structure

The following chapters of this work are organized as follows:

• The theoretical background will be discussed in chapter 2 of this paper; it will serve
to clarify and argue the principles that stand behind this in a more detailed manner.
The topics presented in this chapter will include: Fast-Flux domains and their issues
in the context of spatial statistics, their spatial behaviour as well as other technical
topics such as the R scripting language, amongst others.

• Chapter 3 of this paper will present the methodology of the work that was performed
in the context of this thesis. It will detail the main workflow and its implementation
during the course of this work as well as related tasks such as data gathering and
how the statistical classifiers were realised.

• The outcomes of this work will be interpreted and discussed in chapter 4, by go-
ing into their statistical values and key observations; also the performance of the
statistical classifiers will be investigated.

5



1 Introduction

• Chapter 5 will give a conclusion about what has been achieved, discuss the validity of
the methods applied and summarize the results. Additionally it will give a summary
about the lessons-learned as well as some final remarks and related future prospects.

6



2 Theoretical Background

This chapter explains the theoretical background topics that are necessary to be understood
in order to deal with the details of this work, as well as with topics originating from research
that was carried out by aforegoing authors, from which the research done in this context
draws its theoretical basis.

2.1 Fast-Flux Domains and the Domain Name System

As the introductory chapter gave a preliminary description of what Fast-Flux domains
(FFDs) are, this section will explain them in a more detailed manner. Prior to that, a short
explanation of the Domain Name System (DNS) will be given as it is closely related to
how Fast-Flux is functioning.

2.1.1 The Domain Name System (DNS)

The Domain Name System (DNS) is a decentralised, hierarchical database system that en-
ables the mapping of a domain e.g. ’mail.fh-kaernten.at’ to an IP-address that is associated
with this domain e.g. ’193.171.127.154’. DNS enables the user to employ a recognizable
name when accessing a web-site on the internet rather than using its IP-address which
might be complicated to remember. The theoretical process of resolving domain names
into IP-addresses works roughly as follows:
(IBM 2008)

1. A DNS query starts by contacting a root name sever which is usually preconfigured
on the querying host. The root name server then returns the IP-address of the
name-server responsible for the top-level domain of the domain queried e.g. ’.at’

7



2 Theoretical Background

2. Then top-level domain server is contacted and finds the IP-address for the second-
level domain e.g. ’fh-kaernten’

3. The previous step is repeated until all other name spaces of the queried domain
consists of (an example would be ’mail’ in ’mail.fh-kaernten.at’) have been processed
and the IP-address of the wanted host is returned.

Figure 2.1 illustrates this workflow on the example of ’mail.fh-kaernten.at’.

Figure 2.1: Theoretical DNS domain name resolution

Beyond that it has to explained that a DNS database record that is held by a DNS
server consists of several different sections, which store different types of information.
For the course of this work, however only two of them will be relevant for us (IBM
2008):

• the ’A’ record (’Address Mapping’ or ’Answer’ Record) which contains the IP address
of a specific domain name to be resolved

• the ’NS’ record (’Name Server’ Record) which specifies IP-addresses for other name
servers who respond to a specific domain name queried

The following snippets show sample outputs from the ’dig’ command line tool obtaining
DNS record information for the domain ’fh-kaernten.at’:

The following snippet displays the Answer- or A-record for the domain; the correspond-
ing IP-address is found below the heading ’ANSWER SECTION’, right of the domain
name.

8



2 Theoretical Background

; <<>> DiG 9.3.2 <<>> fh-kaernten.at a

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1076

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;fh-kaernten.at. IN A

;; ANSWER SECTION:

fh-kaernten.at. 2229 IN A 193.171.127.159

;; Query time: 77 msec

;; SERVER: 192.168.0.1\#53(192.168.0.1)

;; WHEN: Thu May 02 12:24:59 2013

;; MSG SIZE rcvd: 48

This snippet on the other hand shows the respective NS-record below the heading ’ADDI-
TIONAL SECTION’, the IP-addresses belonging to the domains’s responding name servers
are again located right aside the name servers’ domain names. It can also be observed that
these two name servers are associated with the domain ’fh-kaernten.at’ in the ’ANSWER
SECTION’ of the request.

; <<>> DiG 9.3.2 <<>> fh-kaernten.at ns

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1817

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:

;fh-kaernten.at. IN NS

;; ANSWER SECTION:

fh-kaernten.at. 3600 IN NS ns1.fh-kaernten.ac.at.

fh-kaernten.at. 3600 IN NS ns2.fh-kaernten.ac.at.

9



2 Theoretical Background

;; ADDITIONAL SECTION:

ns1.fh-kaernten.ac.at. 3600 IN A 193.171.119.77

ns2.fh-kaernten.ac.at. 3600 IN A 193.171.127.177

;; Query time: 77 msec

;; SERVER: 192.168.0.1#53(192.168.0.1)

;; WHEN: Thu May 02 13:03:00 2013

;; MSG SIZE rcvd: 115

For the sake of completeness these two outputs are displayed in all detail, although only
the above mentioned pieces of information are relevant here.

The data obtained from a domain’s A and NS record(s) will matter when considering pa-
rameters for the spatial behaviour of legit and malicious domains which will be explained
in section 2.3. Further technical details of how DNS works exactly will not be relevant in
the current context1.

2.1.2 Fast-Flux Domains (FFDs)

The exact technical details of how Fast-Flux networks operate will be only of limited
importance here, as the spatial distribution and behaviour of fluxed IP-addresses (which
will be explained in 2.3) will be essential for the course of this work rather than the
technology itself.

As mentioned in subsection 2.1.2, the main function of Fast-Flux domains is to associate
many, often as many as thousands of IP-addresses with one single domain name and flux
(change) them rapidly which also finds a legitimate application in respect to load-balancing
matters, in order to ensure availability on web sites that face a high volume of requests
each day. Hereby changing IP-addresses with high frequency is achieved by changing
their corresponding DNS-records.

There are three basic types of Fast-Flux operation (Caglayan et al. 2009):

1 for details see http://pic.dhe.ibm.com/infocenter/iseries/v6r1m0/topic/rzakk/rzakk.pdf [last
access: 4th of June 2013]

10
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2 Theoretical Background

• Basic Fast-Flux or Single-Flux: here, only the IP-addresses of a specific domain which
employs Fast-Flux are fluxed over time

• NS fluxing: in this variant the IP-addresses of name servers that are responding to a
specific FFD

• Double Flux: this type of Fast-Flux operates by fluxing both the IP-addresses of a FFD
itself as well as the IP-addresses of their responding name servers which provides an
additional level of redundancy

According to Zhao and Traore (2012), Fast-Flux networks, regardless of type, expose a com-
mon set of characteristics which are certain for them (selection):

• Low Time-to-live:
The time-to-live (TTL) value indicates how long a particular DNS record for a partic-
ular domain should be kept by the name server before it is discarded and updated,
hence a short TTL is essential for FFDs in terms of getting sure that DNS records for
an FFD always point to the most up-to-date network nodes. While TTL is normally
quite long for Non-Fast-Flux web-sites (about 24 hours) it is proven to be rather short
for FFDs (close to 5 minutes).

• Number of unique A records:
A significant difference between IP-addresses returned from legit and malicious
domains can be observed when examining the number of IP-addresses returned by
subsequent DNS queries over some time. While legit domains generally employ a
small, designated set of addresses for their services, malicious Fast-Flux networks
may utilize ten thousands of IP-addresses which change over time.

• IP Networks:
The IP-addresses that are employed by legitimate domains are usually located within
a common address range, and thus normally show some correlation. The addresses
of malicious domains on the other hand may be arbitrarily distributed over the range
of all possible IP-addresses, a trait that is also observable in a similar way when
examining the IP geolocations of such address sets.

• IP Geolocation:
Analogous to the point above IP-addresses of malicious FFDs will be geographically
dispersed more arbitrarily, while those of legit domains are generally clustered

11



2 Theoretical Background

in certain areas and distributed following some geographical intelligence; the IP
geolocation will serve as the basis for the statistic classifiers that are investigated
during in the scope of this work (see section 2.3).

As stated by Zhao and Traore (2012) Fast-Flux domains can be easily mistaken for legit
domains employing load-balancing mechanisms, when it comes to analysing their be-
haviour. An analogous technique that is used for such a purpose is Round Robin DNS,
where IP-addresses of a domain are simply rotated over time to maintain availability and
prevent traffic bottlenecks. This is especially utilized by so-called Content-Distribution-
Networks (CDNs), which distribute their service over numerous serves to provide them to
the end-user with high performance and high availability. A known example of a CDN
would be ’google.com’; the time-to-live TTL of the DNS-records of google.com can be as
short as for those of a Fast-Flux domain.

2.2 IP geolocation at a glance

IP geolocation is the mapping of an IP address to a physical, geographic location. Amongst
other things, for example, advertisers and search engines employ this service in order to
serve country specific contents to end users. There are two main approaches in this (Gill
et al. 2010):

• measurement-based geolocation

• database-based geolocation

The former approach relies on different algorithms which examine monitored network
traffic in order to make inferences about an IP address’s location, which can be quite
complex; details about how this works will not matter within the scope of this work. The
latter and, in the context of this work, more interesting approach uses databases of location
mappings which can be publicly available as well as proprietary ones. Public databases
are mostly provided by regional Internet registries, such as ARIN2 or RIPE3. Proprietary
databases include the ones supplied by companies such as Quova or Maxmind for example.

2 American Registry for Internet Numbers
http://www.arin.net [last access: 14th of June 2013]

3 Réseaux IP Européens
www.ripe.net [last access: 14th of June 2013]
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2 Theoretical Background

The IP geolocation data that will be employed during the course of this work is delivered
indirectly (as geolocation data will be fetched by a local FreeGeoIP service instance - see
section 1.2) by Maxmind, which also offers a free geolocation database service4. Regardless
of approach, the accuracy of contemporary geolocation algorithms is limited to a range of
about 35-194 kilometers. (Gill et al. 2010)

2.3 Spatial behaviour of Fast-Flux and Non-Fast-Flux

domain IP-addresses

As already stated previously in this paper, IP-addresses of a domain can be mapped to a
coarse real world location by using an IP-geolocation service. Those geolocations exhibit a
spatial distribution behaviour that is different for Fast-Flux and Non-Fast-Flux domains
which arises from the characteristics that were described in the previous section 2.1.2. The
geographically more and less systematically dispersed nature of IP-geolocations of FFDs
can serve to define a set of spatial classifiers that, considered together with other, non-
spatial attributes could be used to classify a domain name as either legit or malicious with
a sophisticated classification accuracy. In the course of this work, two spatial classifiers in
particular will be proposed and incorporated.

The first classifier will be the index of spatial autocorrelation, more precisely: the Moran
Index of Spatial Autocorrelation which has been suggested as a high quality classifier
in the research done by Stalmans et al. (2012). Spatial autocorrelation expresses how
points within a two-dimensional space or a geographic area respectively are dependant
on each other and is based upon the principle that the attributes of points that are closer
together expose a greater degree of similarity than points that are farther away from
each other. Spatial autocorrelation can be negative, positive or zero. Positive autocorre-
lation can be observed when points with similar attribute values are near each other, in
contrast a negative autocorrelation can be seen when similar attribute values lie farther
away from each other on the one hand and more distinct values lie closer together on the
other hand. A spatial autocorrelation of zero indicates that the values of point attributes
are distributed in a spatially random manner. The Moran Index returns values in the
range from -1 to +1 from a given set of points with a particular attribute specified to be

4 http://dev.maxmind.com/geoip/legacy/geolite [last access: 14th of June 2013]
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2 Theoretical Background

examined, whereas negative values indicate a negative spatial autocorrelation and visa
versa; a Moran Index of 0 also indicates a spatial autocorrelation of zero, and thus spatial
randomness.

The Moran Index can be calculated by using the following formula (Griffith 2009):

I =
n
S0

n

∑
i=1

n

∑
j=1

wij(xi − x̄)(xj − x̄)

n

∑
i=1

(xi − x̄)2
,

and

S0 =
n

∑
i=1

n

∑
j=1

wij.

where:

• I represents the Moran Index

• n is the number of observed points

• xi represents the nth variable’s value (the examined attribute of a point)

• x̄ is the mean of x

• wij is the weight (distance) between the two points i and j

• S0 is the sum of all wijs

As it can be observed from an example given by Stalmans et al. (2012) which compares the
IP-geolocations of google.com and a malicious bot-net domain on a world map (depicted
in figure 2.2), those geolocations that are related to the bot-net domain (depicted as circles)
are geographically distributed over the whole world, whereas google.com IP-addresses
(depicted by a triangle) are all concentrated on one point (Mountain-View, California,
USA). Stalmans et al. (2012) tested the results of Moran Index calculations by using several
different spatial attribute values, such as time zones and UTM5 / MGRS6 coordinates, with

5 Universal Transverse Mercator
http://geology.isu.edu/geostac/Field_Exercise/topomaps/utm.htm [last access: 14th of June
2013]

6 Military Grid Reference System
http://earth-info.nga.mil/GandG/coordsys/grids/universal_grid_system.html [last access:
14th of June 2013]
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MGRS coordinates achieving the highest rate of true positives.

Figure 2.2: Differences in the Geographic distributions of legit and malicious domain

IP-geolocations (Stalmans et al. 2012)

This works approaches the same principle using latitude / longitude coordinates of IP-
geolocations associated with a particular domain. When the coordinates of a point are
used as attribute values within Moran Index calculations, Stalmans et al. (2012) asserted
that the results exhibit a characteristic distribution with indices of Non-Fast-Flux domains
scattering around 0 and those of Fast-Flux domains scattering around 1. This observation
could be repeated during the tests performed during this research, as can be seen in chapter
4.

The second important spatial classifier that will be utilized during this work is the so-
called spatial service distance, as it has been proposed by Wang et al. (2012). Basically the
spatial service distance is defined by the average distance between the geolocations of
the IP-addresses associated with a domain name and the geolocations of the IP-addresses
of the name servers that are responding to this domain name. For Non-Fast-Flux do-
mains average service distance is often (but not always) close to zero with their geolo-
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cations often all being concentrated in or around the same area. For FFDs however, this
service distance may become quite large, which is rooted in the fact that an FFD’s IP-
geolocations (and thus those of their name servers) are commonly dispersed arbitrarily
over a great area. Therefore a service distance value is able to act as a spatial domain
classifier.

2.4 A brief outline of the R scripting language

The purpose of this section is to give a brief outline of a few wisely selected topics regarding
the R environment which are relevant for understanding the more detailed descriptions of
the script which will be given in chapter 3.
As stated in section 1.2 R is a freely available scripting language for statistical computing. R
can be run from command line (by the ’R’ command) as well as by using a window system.
When working on the command line, R can be used either interactively or by simply
calling scripts by directing input files to the ’R’ command. Using R interactively means
that a prompt is given to the user which then types in or calls R commands directly. During
the course of this work however, all scripts will be run non-interactively by supplying
input files. The ’R’ command can take several input parameters only one that needs to
explicitly mentioned here is the ’–args’ parameters which can be used to supply command
line parameters of any form to be further used inside the run script (a sample call can be
see in subsection 3.2.2).
Whenever R is run (without regard to if this is done interactively or not), this is referred
to as having an ’R session’. When using R objects are created as well as stored during a
such session; the collection of objects created is called the ’workspace’. This workspace
can be saved to a compressed workspace file during a session and can be restored in
another to continue working on it. (Venebles and Smith 2013) Further, it has to be said
that R functions and their belonging data are organized in the form of packages. These
packages act as libraries for the R environment and are maintained by a central repository7.
R packages can be installed and loaded entirely by using the command line or calling the
necessary commands within a script respectively. (Venebles and Smith 2013)
At last it is necessary to give a short outline of the most basic data structure of the R

7 http://CRAN.R-project.org/ [last access: 14th of June 2013]
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langauge, the vector. In ’R’ the vector is a indexed set of values which can be (amongst
others) of the following types:

• integer - an integer real number

• character - a single character (a vector of characters is basically a string)

• logical - a boolean value either designated as ’TRUE’ or ’FALSE’

This will matter when describing the implemented script’s parameters in subsection 3.2.2.
(Venebles and Smith 2013)

The next chapter deals with the methods, processes and implementations that have been
performed during the course of this work.
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This section describes how the objectives of this work have been realised in detail, such as
the tasks that had to be performed during the implementation of the actual worflow and
prior, as well as subsequent ones.

3.1 Preliminary tasks and data gathering

The main tasks that had to be carried out prior to the actual implementation include:

• Research on theoretical topics

• Selection of a processing environment

• Selection of methods for gathering information that will be needed during processing

• Gathering and selection of data to be tested

Preliminary research was made up of both, information from commercial and none-
commercial sources. Research regarding specific fields, such as botnet-detection including
the works of Stalmans et al. (2012) and Wang et al. (2012) have been obtained from the
IEEE1 Digital Library; other topics such as general statistics and spatial statistics and
material relating to the R scripting language have been obtained from documents that are
freely available to the public.

R was selected as processing environment for the reasons that have already been described
in section 1.2. Although the first versions of the implemented script ran on a Microsoft

1 Institute of Electrical and Electronics Engineers
http://ieeexplore.ieee.org/Xplore/guesthome.jsp [last access: 14th of June 2013]
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Windows 72 desktop machine, the script was sourced out later on to a dedicated sys-
tem in form of a linux3 server, for security reasons as it will be detailed in subsection
3.2.1.

The data that was gathered in the preface of the actual implementation work mostly
included publicly available lists of domain names which are deemed to be used for once
feeding the script. As stated previously in section 1.2, this data consisted of legit domains
as well as domains that were reportedly involved in botnet activities or distributing
malware. Here it is important to say, that although the latter type of domains are reported
to be involved in a botnet, these domains do not necessarily employ fast-flux mechanisms
(see chapter 4). The reason for selecting data from both groups was to supply a control
group of domains to a list of reported botnet domains for the statistical test performed
during execution of the script. The search for data was basically made up of a net search
after reporting sites for both types of domains. After examining several potential data
sources and the data available at them, the following quality criteria have been assumed
in order to narrow down the data available to a set that will finally used in a productive
manner:

• up-to-dateness: the data shall be no older than 6 months and/or be updates on a
regular basis

• free availability: the data shall be available without the necessity of payment

• format: the data shall be available either in CSV4 format or shall be easily reformat-
able into CSV as CSV has been selected as the data format to be used when supplying
data to the script

The list of reportedly legit domains is basically a list of the top 500 registered domains
ranked by the number of domains which link to them. This list was obtained from the so-
cial media monitoring site ’seomoz.org’, which updates this list every month. (seomoz.org
2013)
A list of reported botnet domains has been obtained from the Swiss security blog ’abuse.ch’
which features a tracking site for the so-called ’ZeuS’ botnet and offers a list of associated

2 http://en.wikipedia.org/wiki/Windows_7 [last access: 14th of June 2013]
3 http://en.wikipedia.org/wiki/Linux [last access: 14th of June 2013]
4 Comma Seperated Values

http://dictionary.reference.com/browse/comma%20separated%20values [last access: 14th of June
2013]
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domains for the sake of blocking them in firewalls; this domain block-list currently contains
of 854 domain names and is update continuously (abuse.ch 2013).

In addition to data that was obtained from the said sources, the script was equipped with
the capability to generate a given number of ’simulated’ botnet domains whose IP ad-
dresses are selected randomly with an overall arbitrary spatial distribution.

3.2 Main workflow

The following subsections describe the details of the main workflow, its implementation in
R and how the statistic classifiers were realized, as well as further issues that arose with
it.

3.2.1 Processing environment and security risks

During the course of the work two different operating systems have been deployed, for R
to be run on:

• OpenSUSE Kernel 12.1

• Ubuntu Server 12.10 "Quantal Quetzal"

The reason for selecting the former of the two was the availability of a ready to use system
right at workplace. Here a test setup of the script and all other necessary components
have been implemented and the first function tests have been conducted. As the work
reached a state where the potential interference with presumed malicious domains became
unavoidable, the whole setup have been outsourced to an external virtual server with root
access, for not taking any security risks.

3.2.2 Structure and implementation

Before the actual workflow is explained, it has to be said that the implementation as a
whole consists of a number of components that are located within a common folder and
interact together during runtime. This root folder is designated as ’DBFFD-SAM’ wich is
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basically an acronym for this work and stands for Detection of Botnet Fast-Flux Domains
(by) Spatial Analysis Methods. The components that are contained within can be outlined
as follows (a graphical outline is given in figure 3.1):

1. Data Folder:
This folder contains the input data files for the script in CSV format.

2. SQLite GeoIP database:
This is the local instance of the GeoIP SQLite database from which the IP geolocations
are selected via the DB Search script.

3. Python DB Search Script:
This is a pyhton script that searches the database for the geolocation that is belonging
to an IP address which has to be supplied as parameter for the script; it is shipped
with together the GeoIP database.

4. Python DB Update Script:
This script downloads updates for the database from maxmind.com, it is also re-
sponsible for initializing it prior to first run; this script also comes together with the
database.

5. DBFFD-SAM Main Script:
This is the script that is responsible for executing the main workflow and for con-
ducting all data processing, statistical tests and other related tasks. It is the main
entry point for execution that is started first.

6. R Function Library Script:
This is an R script file that acts as a library for the functions needed by the main script
by pushing them into the workspace. It is run on the beginning of the execution of
the main script.

7. R Package Install Script:
This script is responsible for installing all necessary R packages prior to first run.
It is executed by the function library script at the beginning and checks if any of
the packages needed are missing and starts the R-integrated download and install
process if this is the case.

8. R Workspace File:
This is a compressed file in which the R workspace is saved every times after running
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the script. It contains a selection of R objects including variables, data tables and
functions that are deemed to be persistent across multiple script runs as well as for
posterior examination.

9. Main Script Output File:
This is a file in which the test classification table is written by the main script, for the
sake of a quick lookup every times after running the script.

10. R Plots:
This is a PDF file generated by the main script which contains statistical plots that
illustrate the outcomes of the calculations and tests performed during main script
execution. As plotting is optional in the main script and may be switched off by a
parameter at script start, this file may not necessarily be present.

DBFFD-SAM

Data Folder

SQLite GeoIP Database

Python DB Search Script

Python DB Update Script

DBFFD-SAM Main Script

R Function Library Script

R Package Install Script

R Workspace File

Main Script Output File

R Plots

Figure 3.1: Component structure of the implementation

At next it is necessary to explain that the implemented R-script can be started with a
number of parameters which determine its operation and thus have an impact on the
workflow. As mentioned in section 2.4 the script’s parameters are supplied via the –args
parameter of the ’R’ command. The following table 3.1 gives a summary of all possible
script parameters and how they work.
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name is mandatory type function

in_file yes character path of input file, basically a list of domain names in

CSV format

out_file yes character path to a text file in which the final results of the script

will be outputted for a quick lookup

img yes character path to the R workspace image in which objects that

are to be persistent between runs will be saved

update_db no logical parameter that controls if the GeoIP database update

script should be executed prior to the rest of the script

or not; if yes it will cause the database to be updated. If

it is left out, a default value of FALSE will be assumed.

randomize no integer specifies if and how many simulated ’malicious’ do-

mains with randomized IP locations should be gener-

ated. The default value is -1 which means that none

of such domains will be created. A value of 0 means

that the number of simulated domains will match the

number of ’real’ domains that can be found in the in-

put file. Any other value will specify the exact number

to do so.

plotting no logical specifies whether R plots of the results should be cre-

ated or not; its default value is FALSE.

no_test no logical specifies if the statistical test workflow should be per-

formed; if set to TRUE the main script will halt be-

fore doing so. Can be used to update the database

or redownload the R packages needed only; without

performing the whole workflow. The default value is

FALSE.

no_save no logical this parameters controls whether the R workspace of

a script run will be saved on its finish or not. Can be

used to prevent the script from saving its results to the

workspace at start time for any reason.

Table 3.1: Possible parameters of the implemented R-script

A sample call of the main script can thus look like this (line breaks are for the sake of
readability and have to be omitted in practice):
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R < dbffd-sam.r --args

in_file="data/test_data/domains/malware_domains.csv"

img="test02_2_5.RData" out_file="test02_2_5.out" update_db=TRUE

num_domains=0 randomize=-1 plotting=FALSE

The workflow consists of several steps of particular actions and decisions which are going
to be outlined here one after another.
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Figure 3.2: Flow-chart of the main workflow
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The following describes the different steps of the the workflow, including the start- and
stop-points which are designated as (A), (B) and (C). The remainder of the steps is num-
bered consecutively. A graphical outline of these (as well as the above start- and entry-
points) is given as a flow-chart in the above figure 3.2. The steps are marked with an
asterisk (*) in the chart are to be furtherly detailed after this.

A Start
This is the main script entry point which is entered on script-start. After this step 1 is
executed.

B Halt
This is the premature exit point in which the script will simply stop. It is reached in
case of invalid parameters in step 4, if the parameter ’no_test’ is set to TRUE after
step 9. or if there is another error during execution for any reason.

C Save + Exit
This is the final exit point, that is reached after successfully conducting all tests and
other tasks, after the workspace clean-up in step 24.

The following describes the rest of the different steps of the workflow, which are consecu-
tively numbered.

1 Set default parameters
In this step the default values of the non-mandatory parameters of the script are set.

2 Set up parameters
If non-mandatory parameters are supplied by commandline at script start, the default
parameters of the previous step are overridden.

3 Validate parameters
In this step all parameters are validated.

4 Parameters valid?
If there were any invalid parameters the script will stop at B.

5 Update Database?
In this, it will be checked if ’update_db’ is TRUE. If so, the GeoIP database will be
updated in the next step.
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6 Update the database
Here the new IP geolocation data is downloaded from Maxmind and integrated
into the database as mentioned in section 2.2, if the check in the last step has been
successful. This is done by running the corresponding python script for the database
update.

7 Load workspace
The R workspace specified in the ’img’ parameter is opened and the data-holding
objects stored in it are loaded. If the workspace file with the specified name is non-
existent, loading the workspace is skipped. The workspace name will be used when
saving the necessary objects as it is done in C.

8 Include libraries/functions
The R function library script is run. It will ensure that all necessary packages are
installed and all functions are loaded into the current R environment.

9 Skip test?
If the ’no_test’ parameter is set to TRUE the script will stop at B.

10 Read input file
The CSV input file which is specified by the parameter ’in_file’ is read and its content
(the list of domains) is stored as object into the workspace.

11 Get IPs for domain names
In this step the function for getting all IP addresses (Answer and NS-section) for a
domain are fetched by using ’dig’. This is achieved by looping through all domain
names that have been read from the input file and fetching all A-section IP addresses
and all NS-section IP addresses consecutively, just like the sample queries presented
in subsection 2.1.1. These IP addresses are then stored alongside their corresponding
domain names inside a data object.

12 Valid IPs returned?
Now it is checked if at least one valid A-section and at least one NS-section IP-address
have been returned. If not, which could be the case for example if all domains in the
input file are non-existent or outdated, the script stops at B.

13 Merge previous IPs
If the previous check was successful, the IPs that have been returned at step 12 are
merged with the IP address data objects that have been recovered from the workspace
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that have been opened in step 7, if a workspace with the name that was specified in
the beginning already existed. If this was not the case, merging the data objects is
skipped and the previously returned IP addresses are treated as the complete set.

14 Get locations for IPs
In this step the IP geolocations of the fetched IP addresses are queried from the
database by running the database python search script with each respective IP
address supplied as parameter. This is done for both, the A-section as well as the
NS-section IP addresses. The IP locations for both sections are stored separately in
two different data objects alongside with their corresponding domain names for the
sake of lucidity when furtherly handling them.

15 Calculate Moran Indices
In this step, the Moran Indices of each domain are calculated by examining their IP
locations. This step will be described in more detail within subsection 3.2.3.

16 Calculate service distances
Here, the average service distance of each domain will be calculated, again by looking
at their respective IP locations, the proceedings in this step will be also detailed in
subsection 3.2.3.

17 Simulate FFDs?
Here the value of the ’randomize’ parameter is examined, as described prior in this
section. If there are FFDs left to be ’simulated’ this will happen in the subsequent
step, otherwise the script will jump to step 19.

18 Generate random
In this step simulating an adequate number of Fast-Flux domains is started by
generating a respective set of random domain names, each with a corresponding
set of 3-5 (this range has been selected for performance reasons) addresses for both
A- and NS-section. The non-existent top-level-domain5 ’.bb’ is suffixed to random
domain names to ensure that no ’real’ domains will associated accidentally. As it
is stated in section 1.2, the randomized IP addresses however are real ones that
are to exhibit a real IP location, although it does not matter which one, merely it is
their random spatial distribution that is to let them exhibit a very striking FFD-like
behaviour. After generating the IP addresses the script calls the same function as in

5 http://dictionary.reference.com/browse/top-level+domain [last access: 14th of June 2013]
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step 14 for querying their IP locations and continues through the steps 15 and 16,
which is done until the number of FFD to be simulated is reached.

19 Merge Simulated
Here, the randomly generated data of the simulated FFDs is merged with those of the
’real’ domains’ ones. If there were no FFDs to be simulated, this process is skipped.

20 Classify domains
This is probably the most important step of the script, in which the accumulated
domains are classified by as either suspect or non-suspect (see section 1.1). This
process is given in detail in the following subsection 3.2.3.

21 Write results
After doing this, the table object that contains the classification results is written to a
file (that was specified in ’out_file’) in text form, in order to provide a quick lookup
of the results.

22 Plotting?
Here it is checked if the ’plotting’ parameter is set to TRUE. If this is the case, a certain
number of plots are drawn that depict the different results of this script, for example
scatter plots and density curves of Moran Index and Average Service Distance values
the domains by section and simulated/real type. Examples of these will be presented
in chapter 4. If ’plotting’ has been set to FALSE the script continues straigth to step
24.

23 Draw plots
Here the actual plots are drawn if the previous test succeeded. Afterwards the script
will continue to the next step.

24 Clean-Up
Here all objects are removed from the workspace that are not intended to be saved
to the workspace image. Once this is done the script will finish its execution in C,
where the remaining objects will be saved to the workspace image file that has been
specified in the beginning.

The next subsection tells about how the actual statistic classifiers have been implemented
and shows the crucial workflow steps mentioned in the previous description in more detail
respectively.
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3.2.3 Realisation of statistic classifiers

As mentioned in section 1.2 the two statistic classifiers this approach relies on in order to
characterize the spatial behaviour of a particular domain are the Moran Index of spatial
autocorrelation and the average service distance as it has been described in section 2.3. In
this section the workflow steps 15, 16 and 20 that correspond to calculating said classifiers
and carrying out the classification of the domains respectively, are going to be explained
in more detail, each one after another.

(15) Calculate Moran Indices
In order to calculate the Moran Indices, a set of A-section IP locations stored by their
corresponding domain names is supplied to the responsible function, which then loops
through the whole set of domains. For each domain, its IP locations are examined and a
distance matrix is calculated by using their latitude and longitude coordinates, which is
then used to calculate the corresponding Moran Index straight afterwards. The indices are
then stored together with their corresponding domain names. There are two special cases
that can occur during this:

• There is only one IP location found for a domain.
This happens when a domain is associated with only one IP address. In this case
calculating the Moran Index will be erroneous as no valid distance matrix could be
created.

• A domain has several associated IP addresses, but their IP locations are all in the
same place.
This is for example the case for ’google.com’ which has many addresses associated
which are all found to reside in one location. Here, the calculation of the Moran
Index would also fail because the distances within the distance matrix being all zero.

Both of these cases are handled by assuming a Moran Index of 0. This value normally
indicates spatial randomness, however it could be observed during several script runs
by examining the results that this value won’t naturally occur in this context. The reason
for this lies in the nature of the attributes that are used to calculate the distance matrices
and the Moran Indices respectively, namely the latitude and longitude coordinates of the
different domains’ IP locations. In the case of spatial randomness, the attribute values of the
observed points in space won’t exhibit any clear correlation to their position; in this case,
however, the coordinates of the points itself are used as attributes which means that they
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must be at all accounts correlated to the position of the points they describe. For this reason
a Moran Index of zero has been chosen as an indicator in the case that no valid Moran
Index could have been calculated for a particular domain.

(16) Calculate Service Distances
The calculation of the average service distances is straight forward. For each domain the
euclidean distance between every A-section IP location and every NS-section IP location
that are associated with that domain, is determined and the mean is calculated out of this
values. These mean values are then stored alongside their corresponding domain names
and returned.

(20) Classify Domains
Here, the actual domain classification as either suspect or non-suspect is performed; this
process is straightforward and comparatively simplistic. It is done by looping through
all domains and checking their Moran Index and average service distance values against
certain threshold values. These threshold values have been determined by repeatedly
examining the Moran Index and average service distance values of a list of reportedly legit
domains as well as a list of reportedly malicious domains during multiple subsequent
test runs of the script. The observations made by investigating the values of the lists of
domains have been used to model the threshold criteria in such a way that as least as
possible false positives and negatives would be achieved.

In order to understand how this has been done exactly, it is necessary to present some
key observations that helped determining the threshold values, which are the follow-
ing:

• The majority of processed domain names, regardless of whether they are legit or
malicious expose just one single IP address or one single IP location respectively, even
when observed continuously over certain time span. These have been determined
to be as definitely Non-Fast-Flux as this trait contradicts Fast-Flux behaviour per
definition.

• Large CDNs like google.com for example, have many IP addresses associated, but
these are all located in the same place, which effectively leads to the same result as in
the previous point.

• From the set of domains where Fast-Flux behaviour could be precluded, it could be
observed that the majority of average service distance values lay within a certain
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percentile range, this has been exploited to define a threshold value for the average
service distance.

After classifying the domains as either suspect or non-suspect, the steps 21-24 are per-
formed as described in the previous subsection 3.2.2, before the workspace is saved and
the script exits.

The results that have been achieved by the aforementioned procedural manner are pre-
sented in all detail in the following chapter 4.

3.3 Measuring Accuracy

Measurement accuracy is defined as the "closeness of agreement between a measured
quantity value and a true quantity value of a measurand" (JCGM/WG2 2008). In this
work accuracy will be thus represented by the rate of the number true positives and
negatives to the sum of true positives, true negatives, false positives and false nega-
tives:

A =
np + nn

np + nn + n̄p + n̄n

where:

• A is the accuracy value in percent

• np is the number of observed true positives

• nn represents the number of true negatives

• n̄p is the number of false positives

• n represents the number of false negatives

The accuracy of the outcomes of the statistical tests will be assessed in the next chapter 4
by using this method.
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In this chapter, the results that have been achieved by the research done during the course
of this work will be presented and interpreted.

4.1 Characterization and interpretation

The totality of domain names that have been examined during the tests, is (as already
indicated in section 3.1) made up of three different sets of domains: the list of legit domains,
the list of malicious domains as well as the simulated FFDs that have been generated by
the script. At first, for the legit and malicious domains, a selection of domains will be
investigated in detail, in order to present all relevant cases that occurred within the results
of the test series; after that overall statistics, for all sets of domains will be explained. Table
4.1 summarizes a selection of statistical values for all three sets of domains; these values
comprise the following:

• total domains
This is the overall number of domains in the set.

• domains classified
This is the number of domains that made it to the classification towards the end of
the script. A difference between the total number of domains and the number of
domains classified can be caused by domains that are unreachable, unresolvable or
do not yield any valid IP location for any reason; those will be excluded from the set
of domains that reach the classification procedure.

• positives
This is the number of domains that were classified as ’suspect’.
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• negatives
This is the number of domains that were classified as ’non-suspect’

• true positives
This is the number of domains that were classified correctly, as ’suspect’.

• false positives
This is the number of domains that were classified erroneously, as ’suspect’.

• true negatives
This is the number of domains that were classified correctly, as ’non-suspect’.

• false negatives
This is the number of domains that were classified erroneously, as ’non-suspect’.

• accuracy (%)
This is the classification accuracy which is given by the formula in section 3.3.

• service distance 95% percentile
This is the 95% percentile of the average service distance values of the domains
within the set that have been precluded to be Fast-Flux domains; this means that 95
percent of these domains have an average service distance that lies below this value.

value legit malicious simulated

total domains 501 832 500

domains classified 489 541 428

positives 4 4 428

negatives 485 537 0

true positives 0 4 428

false positives 4 0 0

true negatives 485 530 0

false negatives 0 7 0

accuracy (%) 99.182 98.7061 100

service distance 95% percentile 7997.547 7889.459093 10583.076

Table 4.1: Overall statistics for the different sets of domains

As there is no clear ’resolution’ available whether the results of the classification are
correct or not, the following assumptions had been inferred from the background of
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the used data, when it came to handling true or false positives and negatives respec-
tively:

• Legit domains:
As all of the domains in this list are trusted, every domain that is classified as ’suspect’
will count as a false positive.

• Malicious domains and simulated domains:
As all domains at the list of malicious domain originate from a bot-net blocklist and
are generally distrusted, every domain classified as ’suspect’ will be assumed being
a true positive with no false positives present at all. In addition to that all domains
with a Moran Index of zero will be counted as true negatives, whilst all domains with
a Moran Index other than zero that are classified as ’non-suspect’ will be deemed to
be false negatives.

The next section details the different behavioural traits encountered, by giving examples
and statistics for the different sets of domains.

4.2 Behaviour of domains

The key cases that have been encountered (two of them have been already mentioned in
subsection 3.2.3) when examining the test results will be presented in detail here, in order to
show how different domains behave. This will be done using the examples of some selected
domains; their statistical values are summarized in table 4.2.

The list of legit domains comprised well-known sites, with a number of large CDNs
among them, such as ’google.com’, ’facebook.com’ or ’amazon.com’. The first example
that will be presented here is a large and well-known content distribution network, the
domain ’youtube.com’. This domain represents the case of having many IP addresses
associated with, as many as 22, although having only one unique IP location for all of
these IPs. In case of youtube.com this is Mountainview, California, the locations were
most of google-related services and sites (with ’google.com’ being the best example) will
have its IP locations. Also, the average service distance proofed to be exactly zero for this,
domain; which has its reason in all corresponding name servers being concentrated in
the same single IP location; analogously this is also the case for ’google.com’. For this
reason the Moran Index of ’youtube.com’ also has an assumed value of zero, as just one
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unique IP location was found for this domain, which defies the calculation of a distance
matrix.

The next example being presented is the domain ’wordpress.com’; it has 6 IP addresses
associated with three unique IP locations belonging to them. The Moran Index of this
domain is -0.13338235, which indicates moderate dispersion among its IP locations; the
average service distance is relatively low with a value of 1270.804. The domain ’word-
press.com’ is a border case, which would have been erroneously classified as ’suspect’
without the average service distance as second classifier.

Another example from the list of legit domains ’icq.com’. This domain is characterized
by having just one IP and one IP location respectively associated (and thus a Moran
Index of zero), but an extraordinarily high average service distance of 14357.02. Although
this domain defies being classified as ’suspect’, it shows that a high average service
distance is not necessarily only a characteristic of domains that have many IP addresses
associated as well; this case is not quite common however, with only ten domains out
of 489 having a Moran Index of zero and an average service distance greater than ten
thousand.

The last example from the list of legit domains is ’amazon.de’ which is an example of a
domain that has been erroneously classified as ’suspect’. It has a Moran Index of -1 with
three IP addresses associated that belong to two unique IP locations. The domain has a high
average service distance of 13364.257. It is one of the four reported false positives within the
list of legit domains, out of a total of 489 classified domains.

From the set of malicious domains only one example will be considered here in detail,
which is a domain that has been classified as ’suspect’. As the said example, the domain
’aesssbacktrack.pl’ will be taken. It has eight IP addresses associated which correspond
to eight unique IP locations. It features a Moran Index of 0.012668304 and an average
service distance of 9507.62. The spatial behaviour of this domain exactly matches the
characteristics that are expected from a bot-net related Fast-Flux domain as it has been
described in section 2.3 towards the beginning of this work.
The next example is from the set of simulated Fast-Flux domains. This set is special
inasmuch as the domains in this set have been generated randomly by selecting associating
arbitrary to random domain names. This has to be done to simulate a set of domains that
adhere to the most explicit spatial behaviour that is expected from a Fast-Flux domain
in theory. A typical example of the domains in this set would be ’Hubbart Jr.bb’ which
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is characterized by a Moran’s Index of -0.0487104772 and an average service distance of
10280.711. Obviously this domain has been, as intended, classified as ’suspect’. The reason
why the number of IP addresses and unique IP locations are not given for this example, is
that during the simulation process the two classifier values are calculated on the fly by
randomly creating IPs, which are the discarded and not stored, for not wasting working
memory.

At last, for the sake of completeness, an example has to be given which is represen-
tative for the majority of domains that have been processed and classified; a domain
that has just one associated IP address and thus one associated IP location. This do-
main necessarily has a Moran Index of zero as well as an average service distance of
zero. An example of such a domain (taken from the list of legit domains) would be
’blogspot.com’.

domain IP addresses IP locations Moran Index service distance suspected

youtube.com 22 1 0 0 no

wordpress.com 6 3 -0.13338235 1270.804 no

icq.com 1 1 0 14357.02 no

amazon.de 3 2 -1 13364.257 yes

aesssbacktrack.pl 8 8 0.012668304 9507.62 yes

Hubbart Jr.bb - - -0.0487104772 10280.711 yes

blogspot.com 1 1 0 0 no

Table 4.2: Examples of different domain characteristics

For comparison, figure 4.1 illustrates plotted density curves of both statistic classifiers, for
all three sets of domains.
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Figure 4.1: Comprehensive density curves of statistic classifiers

Finally, the following figure 4.2 visualizes the spatial distribution of the said domains on a
world map (compare figure 2.2 in subsection 2.1.2).
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Figure 4.2: Spatial distribution of selected domains

4.3 Statistic outcomes

After the encountered key cases have been presented, the overall statistics for the three
different sets themselves are going to be discussed in straight forward manner. The
statistical values of these are summarized in table 4.1. The first set that will be dealt
with is the set of legit domains. Of 501 domains that have been read from the input
file a total of 489 have been classified, with four positives (counted as false positives)
and 485 negatives (counted as true negatives), resulting in a classification accuracy of
99.182 percent. 95 percent of the average service distance values of the domains with a
Moran Index of zero lay below a value of 7997.547. This means that all domains with
non-zero Moran Index that have an average service distance that lies above this threshold
are classified as ’suspect’. Here, the average service distance classifier helped greatly to
reduce the false positives, a total of 45 domains would have been classified as ’suspect’
if the Moran Indices had been examined only, reducing the classification accuracy to 91
percent.

In comparison to that, the statistical values of the set of malicious domains can be examined.
Here, a total of 832 domains have been given as input, whereas only 541 of them have been
classified. The reasons for this lies in the fact, that many addresses of the blocklist that were
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used as data source, could not be contacted or resolved at the time of testing, although the
said blocklist is maintained and updated continuously. Thus it seems that domains that are
involved in bot-net activities do have a short lifetime and are frequently disabled, either
by authorities or the operator of the bot-net himself. Of these 541 classified domains a
total of four has been marked as ’suspect’, which are counted as true positives, in contrast
to 537 negatives, from which seven domains have a Moran Index not equal to zero. The
latter ones have thus been counted as false negatives, resulting an overall classification
accuracy of 98.7061 percent. All of these seven false positives have been classified in that
way because of an average service distance that lay below the 95% percentile threshold
value of 7889.459093. That this value is lower then the one observed in the set legit
domains, again indicates that the correlation between the average service distance and
the nature of a domain is not as strong as expected, at least when dealing with real-world
data.

This can be clarified when examining the statistic properties of the set of simulated do-
mains, that has an average service distance threshold value of 10583.076, which is signif-
icantly larger than the one of the former two sets of domains. As the IP addresses for
each simulated domain comprises of a set of randomly selected IP addresses greater than
one, single IP locations are extremely unlikely, which explains that no Moran Index with
a value of zero can be found in this set of domains. The spatially arbitrary selection of
IP addresses also explains the large average service distance percentile observed. From
this set of domains 100 percent have been classified as ’suspect’ as it was intended by
generating the set, which shows that the spatial classifiers are working very well for
theoretical data, but not as same as well for non-simulated real-world data, as it can be
observed by examining the results for the former two sets of domains. It has to be noted
that from the total of 500 simulated domains only 428 have made it to classification. This
can be explained by the fact that the randomly generated IP addresses often hit addresses
which are reserved on the internet for special purposes, and thus cannot be associated
with a valid IP location.

Further, it can be said that the two spatial statistic classifiers that were used in order to
realise a classification of the different domains as either ’suspect’ or ’non-suspect’, thus the
Moran Index of spatial autocorrelation and the average service distance of nameservers, in
a large part, followed the behaviour that was proposed in section 2.3; with some mean-
derings however. Viewed separately the Moran Index showed no apparent unexpected
behaviour at all, being able to indicate spatial dispersion for a domain’s IP location, as
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well as leaving CDNs unsuspected, that have their IP addresses organized in a central
location. The average service however, on the one side, in combination with the Moran
Index, helped to reduce false positives among the legit set of domains, but potentially
increased false negatives on the other side, when going over the set of malicious domains.
Nevertheless, in 57 cases were the average service distance was deciding, it acted right
in a total of 41 cases which gives a success rate of 77.19298 percent, which credits the
average service distance being a less performing classifier than the Moran Index, but still
achieving correct results when being combined with the former classifier. The lacking
availability to differentiate between domains with just one and more than one unique
IP locations however, means that it is inalienably dependable on the Moran Index to
perform.

The next chapter concludes this work and gives a statement of the overall quality of the
results achieved as well of the validity of the methods applied.

41



5 Conclusion

The research that was conducted in the course of this work, has shown that the combination
of the two statistic classifiers proposed, provides an accurate and lightweight possibility to
detect Fast-Flux behaviour among a set of given domains; while avoiding false positives
among legit Content Distribution Networks to a certain degree. It should be kept in mind,
that the setup approached during this work, has been realised with a comparatively low
expense of resources, the only commercial component being the virtual server on which
the final setup has been implemented.
Neither traffic-intensive network monitoring nor any commercial data sources have been
employed here, the main data traffic that was present here, was due to frequent DNS
queries and occasional updates of the FreeGeoIP database, which is, at least for the former,
negligible.
Certainly, this approach in terms of data processing, data gathering and how threshold
values are determined can be optimized, especially when interpreting the average service
distance values, which means that there may be more accurate methods of classifying a
domain according to the average service distance than just using a 95% percentile. One
way to improve the classification accuracy, that does not apply solely to the average service
distance, but to all classifiers however, may be incorporating a Bayesian learning network1,
which is basically a learning probabilistic model, which could be continuously modified on
a trial-and-error basis, in order to achieve the best possible results. As well, other classifiers
could be incorporated in this process to augment accuracy and confidence in classification,
such as the time to live for the IP addresses for a certain domain, which could help to
more reliably distinguish malicious from legit Fast-Flux domains, as the former exhibit a
characteristically low time to live value for their IPs, which can be read in subsection 2.1.2.
The observations made during conducting the research also indicate that the quality of
the outcomes that can be achieved by these means, heavily depends on the input, thus the
sets of domains investigated, being as up-to-date as possible; as Fast-Flux domains were

1 http://www.ee.columbia.edu/~vittorio/Lecture12.pdf [last access: 14th of June 2013]
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observed to expose a short lifetime only. Due to this, it would be interesting to see this
setup to be operated in the context of a professional cyber-defence project, were live-data
is collected and evaluated continuously, such as the ACDC centralized data clearing house,
in order to see how this approach performs in such an environment.
As a final word, it has to be said that though Fast-Flux detection by means of spatial statis-
tics seem trivial, especially when compared to other approaches, decent maintenance and
apprehension needs to be provided in order to operate these; input as well as output con-
stantly needs to be interpreted in a critical and qualitative way, which basically means that
these always need to be double-checked and handled with common sense, in order to pre-
vent the classification process from yielding erroneous results.
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